Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề phủ định của mệnh đề "9+π≥12" là
Các giá trị của x để mệnh đề chứa biến P(x): "x là số tự nhiên thỏa mãn x4−5x2+4=0" đúng là
Hình vẽ nào sau đây có phần không bị gạch biểu diễn cho tập A={x∈R3x−1≥2}?




Hệ bất phương trình nào sau đây không là hệ bất phương trình bậc nhất hai ẩn?
Cặp số nào sau đây là nghiệm của bất phương trình 3x−3y≥4?
Giá trị của B=cos273∘+cos287∘+cos23∘+cos217∘ là
Cho tam giác ABC thoả mãn b2+c2−a2=bc, trong đó a, b và c là độ dài ba cạnh. Số đo góc A bằng
Mệnh đề phủ định của "Bất phương trình x−2<0 vô nghiệm" là
Cho A=(−∞;−2], B=[3;+∞), C=(0;4). Khi đó tập (A∪B)∩C là
Cho tập hợp A={1;2;3;4;5}. Số tập hợp X thỏa mãn A\X={1;3;5} và X\A={6;7} là
Phần không tô màu là hình vẽ biểu diễn miền nghiệm của hệ bất phương trình nào dưới đây?
Phần tô màu (không bao gồm đường thẳng nét đứt) trong hình nào sau đây là miền nghiệm của bất phương trình 2x−y+3<0?




Lớp 10A có tất cả 40 học sinh trong đó có 13 học sinh chỉ thích đá bóng, 18 học sinh chỉ thích chơi cầu lông và số học sinh còn lại thích chơi cả hai môn thể thao nói trên.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Có 9 học sinh thích chơi cả hai môn cầu lông và bóng đá. |
|
b) Có 22 học sinh thích bóng đá. |
|
c) Có 26 học sinh thích cầu lông. |
|
d) Có 21 học sinh chỉ thích chơi một trong hai môn cầu lông và bóng đá. |
|
Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại I và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất hai sản phẩm trên là 18 giờ. Gọi x,y lần lượt là số sản phẩm loại I, loại II mà đội làm được trong thời gian cho phép.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng thời gian (giờ) làm xong sản phẩm loại I là 2x, tổng thời gian làm xong sản phẩm loại II là 3y. |
|
b) 3x+2y<18. |
|
c) Khi số sản phẩm loại I là 3, loại II là 4 thì thời gian đội đó làm nằm trong thời gian cho phép. |
|
d) Khi số sản phẩm loại I là 2, loại II là 6 thì thời gian đội đó làm vượt quá thời gian cho phép. |
|
Cho cosα=−32 và α∈(90∘;180∘).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sinα>0. |
|
b) sinα=−35. |
|
c) cotα=−52. |
|
d) tanα=25. |
|
Một xưởng sản xuất định lựa chọn hai loại máy chế biến loại I và loại II. Máy loại I mỗi ngày một máy chế biến được 300 kg sản phẩm, máy loại II mỗi ngày một máy chế biến được 450 kg sản phẩm. Biết rằng, để có lãi mỗi ngày xưởng phải sản xuất được nhiều hơn 50 tấn sản phẩm. Gọi x, y tương ứng là số lượng máy loại I và máy loại II xưởng chọn để sản xuất.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khối lượng sản phẩm tạo ra trong một ngày từ số lượng máy trên là F(x;y)=30x+45y. |
|
b) Để đảm bảo xưởng có lãi mỗi ngày, ta cần 6x+9y−1000>0. |
|
c) Xưởng nên lựa chọn 50 máy chế biến loại I và 80 máy chế biến loại II để đảm bảo có lãi. |
|
d) Nếu xưởng lựa chọn 70 máy chế biến loại I và 60 máy chế biến loại II sẽ không đảm bảo có lãi. |
|
Cho các tập hợp khác rỗng A=[2m+1;m+4] và B=(−∞;−1]∪(5;+∞). Có tất cả bao nhiêu giá trị nguyên dương của m để A∩B=∅?
Trả lời:
Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lí, 14 học sinh giỏi cả môn Toán và Lí và có 6 học sinh không giỏi môn nào cả. Lớp học đó có bao nhiêu học sinh?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24 g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1 g hương liệu; pha chế 1 lít nước táo cần 10 g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Tính a−b.
Trả lời:
Tính giá trị nhỏ nhất của biểu thức F(x;y)=−x+4y với (x;y) thuộc miền nghiệm của hệ bất phương trình ⎩⎨⎧x≥1x≤2y≥0y≤3.
Trả lời:
Để đo chiều cao của một cột cờ trên đỉnh một toà nhà anh Bắc đã làm như sau: Anh đứng trên một đài quan sát có tầm quan sát cao 5 m so với mặt đất, khi quan sát anh đo được góc quan sát chân cột là 40∘ và góc quan sát đỉnh cột là 50∘, khoảng cách từ chân toà nhà đến vị trí quan sát là 18 m.
Tính tổng chiều cao cột cờ và chiều cao của toà nhà. (Làm tròn kết quả đến chữ số thập phân thứ nhất của đơn vị mét)
Trả lời: