Giới thiệu về bản thân



































Xét tam giác \(A B C\) có hai đường trung tuyến \(B M\) và \(C N\) cắt nhau tại \(G\) (giả thiết) nên \(G\) là trọng tâm của \(\Delta A B C\).
Suy ra \(G M = \frac{G B}{2}\); \(G N = \frac{G C}{2}\) (tính chất trọng tâm của tam giác) (1)
Mà \(P\) là trung điểm của \(G B\) (giả thiết) nên \(G P = P B = \frac{G B}{2}\) (2)
\(Q\) là trung điểm của \(G C\) (giả thiết) nên \(G Q = Q C = \frac{G C}{2}\) (3)
Từ (1), (2) và (3) suy ra \(G M = G P\) và \(G N = G Q\).
Xét tứ giác \(P Q M N\) có: \(G M = G P\) và \(G N = G Q\) (chứng minh trên)
Do đó tứ giác \(P Q M N\) có hai đường chéo \(M P\) và \(N Q\) cắt nhau tại trung điểm \(G\) của mỗi đường nên là hình bình hành.
ư
a) Vì ABCD là hình bình hành nên AB = CD; AB // CD.
Mà hai điểm B, C lần lượt là trung điểm AE, DF.
Suy ra AE = DF; AB = BE = CD = CF.
Tứ giác AEFD có AE // DF (vì AB // CD); AE = DF (chứng minh trên).
Do đó tứ giác AEFD là hình bình hành.
Tứ giác ABFC có AB // CF (vì AB // CD); AB = CF (chứng minh trên).
Do đó tứ giác ABFC là hình bình hành.
b) Vì hình bình hành AEFD có hai đường chéo AF và DE nên chúng cắt nhau tại trung điểm của mỗi đường, ta gọi giao điểm đó là O.
Hình bình hành AEFD có hai đường chéo AF và BC.
Mà O là trung điểm của AF.
Suy ra O cũng là trung điểm của BC.
Vậy các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau.
Vì \(A B C D\) là hình bình hành nên ta có:
+ Hai đường chéo \(A C\) và \(B D\) cắt nhau tại \(O\) nên \(O A = O C\), \(O B = O D\).
+ \(A B\) // \(C D\) nên \(A M\) // \(C N\) suy ra \(\hat{O A M} = \hat{O C N}\) (hai góc so le trong).
Xét \(\Delta O A M\) và \(\Delta \&\text{nbsp}; O C N\) có:
$\widehat{O A M} = \widehat{O C N} (chứng minh trên)
\(O A = O C\) (chứng minh trên)
\(\hat{A O M} \&\text{nbsp}; =\)\widehat{C O N} (hai góc đối đỉnh)
Do đó \(\Delta \&\text{nbsp}; O A M = \Delta \&\text{nbsp}; O C N\) (g.c.g).
Suy ra \(A M = C N\) (hai cạnh tương ứng).
Mặt khác, \(A B = C D\) (chứng minh trên);
\(A B = A M + B M\); \(C D = C N + D N\).
Suy ra \(B M = D N\).
Xét tứ giác \(M B N D\) có:
\(B M\) // \(D N\) (vì \(A B\) // \(C D\))
\(B M = D N\) (chứng minh trên)
Do đó, tứ giác \(M B N D\) là hình bình hành.
Vì \(A B C D\) là hình bình hành nên ta có:
+ Hai đường chéo \(A C\) và \(B D\) cắt nhau tại \(O\) nên \(O A = O C\), \(O B = O D\).
+ \(A B\) // \(C D\) nên \(A M\) // \(C N\) suy ra \(\hat{O A M} = \hat{O C N}\) (hai góc so le trong).
Xét \(\Delta O A M\) và \(\Delta \&\text{nbsp}; O C N\) có:
$\widehat{O A M} = \widehat{O C N} (chứng minh trên)
\(O A = O C\) (chứng minh trên)
\(\hat{A O M} \&\text{nbsp}; =\)\widehat{C O N} (hai góc đối đỉnh)
Do đó \(\Delta \&\text{nbsp}; O A M = \Delta \&\text{nbsp}; O C N\) (g.c.g).
Suy ra \(A M = C N\) (hai cạnh tương ứng).
Mặt khác, \(A B = C D\) (chứng minh trên);
\(A B = A M + B M\); \(C D = C N + D N\).
Suy ra \(B M = D N\).
Xét tứ giác \(M B N D\) có:
\(B M\) // \(D N\) (vì \(A B\) // \(C D\))
\(B M = D N\) (chứng minh trên)
Do đó, tứ giác \(M B N D\) là hình bình hành.
91800
B
B nhé