Giới thiệu về bản thân
A community helper I admire is a teacher. Their job is to educate students and help them learn new things. They usually wear professional clothes like shirts and pants or dresses. They are patient and caring, always ready to help students understand difficult topics. In the classroom, they teach lessons and organize fun activities. They also grade papers and plan lessons to help students succeed. I feel grateful for teachers because they help us grow and learn every day.
a) Xét tam giác \(A B H\) vuông tại \(H\), ta có \(H B = A H . tan \hat{B A H} = 4. tan 2 8^{\circ} \approx 2 , 1\) (cm)
Vì tam gaisc \(A H C\) vuông tại \(H\) nên \(H C = A H . cot \hat{C} = 4. cot 4 1^{\circ} \approx 4 , 6\) (cm)
b) Xét tam giác \(A B H\) vuông tại \(H\), ta có
\(cos \hat{B A H} = \frac{A H}{A B}\) hay \(A B = \frac{A H}{cos \hat{B A H}} = \frac{4}{cos 28 ^{\circ}} \approx 4 , 5\) (cm)
Vì tam giác \(A H C\) vuông tại \(H\) nên \(sin \hat{C} = \frac{A H}{A C}\) hay \(A C = \frac{A H}{sin \hat{C}} = \frac{4}{sin 4 1^{\circ}} \approx 6 , 1\) (cm).
Xét \(\Delta A B H\) vuông tại \(H\) có \(A H = A B . sin \hat{B} = 3. sin 6 0^{\circ} \approx 2 , 6\)
Tương tự, xét \(B H = A B . cos \hat{B} = 3. cos 6 0^{\circ} = 1 , 5\)
Mà \(H C = B C - H B = 4 , 5 - 1 , 5 = 3 , 0\)
Theo định lí Pythagore ta có \(A B^{2} = B H^{2} + A H^{2} = 3^{2} + 2 , 6^{2} = 15 , 76\)
Suy ra \(A B = \sqrt{15 , 76} \approx 4 , 0\)
Xét \(\Delta A H C\) vuông tại \(H\) ta có \(tan \hat{A C H} = \frac{A H}{H C} \approx \frac{2 , 6}{3 , 0} \approx tan 4 0^{\circ} 5 5^{'}\)
Do \(\hat{A} = 18 0^{\circ} - \hat{B} - \hat{C} = 18 0^{\circ} - \left(\right. 6 0^{\circ} + 4 0^{\circ} 5 5^{'} \left.\right) = 7 9^{\circ} 5^{'}\).
Xét \(\Delta ABH\) vuông tại \(H\) có \(A H = A B . sin \hat{B} = 2 , 1. sin 7 0^{\circ} \approx 1 , 97\)
Tương tự, xét \(B H = A B . cos \hat{B} = 2 , 1. cos 7 0^{\circ} \approx 0 , 72\)
Mặt khác, xét \(\Delta A H C\) vuông tại \(H\) ta có
\(sin \hat{C} = \frac{A H}{A C} \approx \frac{1 , 97}{3 , 8} \approx sin 3 1^{\circ} 1 4^{'}\)
Do đó \(\hat{C} \approx 3 1^{\circ} 1 4^{'}\)
Mà \(\hat{A} = 18 0^{\circ} - \left(\right. 7 0^{\circ} + 3 1^{\circ} 1 4^{'} \left.\right) = 7 8^{\circ} 4 6^{'}\)
Ta có \(H C = A C . cos \hat{C} \approx 3 , 80. cos 3 1^{\circ} 1 4^{'} \approx 3 , 25\)
Mà \(B C = B H + H C = 0 , 72 + 3 , 25 = 3 , 97\).
Ta có \(\hat{A} = 180 ^{\circ} - \hat{B} - \hat{C} = 7 5^{\circ}\)
Kẻ đường cao \(B H\).
Xét \(\Delta B C H\) vuông tại \(H\), ta có:
\(B H = B C . sin \hat{C} = 4 , 2. sin 4 0^{\circ} \approx 2 , 70\) (cm)
Tương tự, xét \(\Delta A B H\) vuông tại \(H\), ta có:
\(A B = \frac{B H}{sin \hat{A}} = \frac{2 , 70}{sin 7 5^{\circ}} \approx 2 , 8\) (cm)
Mặt khác ta có \(A C = A H + C H = B H . \left(\right. cot \hat{A} + cot \hat{C} \left.\right) \&\text{nbsp}; \approx 2 , 70. \left(\right. cot 7 5^{\circ} + cot 4 0^{\circ} \left.\right) \approx 3 , 9\) cm.
Ta có \(\hat{A} = 18 0^{\circ} - \hat{B} - \hat{C} = 7 0^{\circ}\).
Kẻ đường cao \(A H\).
Xét \(\Delta A B H\) vuông tại \(H\), ta có \(A H = A B . sin \hat{B} = 2 , 8. sin 6 5^{\circ} \approx 2 , 54\) (cm).
Tương tự \(B H = A B . cos \hat{B} = 2 , 8. cos 6 5^{\circ} \approx 1 , 18\) (cm).
Mặt khác do giả thiết suy ra tam giác \(H A C\) vuông cân tại \(H\) nên \(H A = H C\).
Do đó \(B C \approx 2 , 54 + 1 , 18 = 3 , 7\) (cm).
Xét \(\Delta A H C\) vuông tại \(H\), ta có \(A C = \frac{H A}{sin C} = \frac{2 , 54}{sin 4 5^{\circ}} \approx 3 , 6\) (cm).
vvbnml,
gc hjk;m,
;.ô
ngvnm