Giới thiệu về bản thân
\(\infty+63=\)
xong
\(\colon3\begin{cases}\begin{cases}\begin{cases}\left[\begin{array}{l}\left[\begin{array}{l}\placeholder{}\\ \placeholder{}\\ \placeholder{}\end{array}\right.\\ \placeholder{}\\ \placeholder{}\\ \placeholder{}\end{array}\right.\\ \placeholder{}\\ \placeholder{}\\ \placeholder{}\end{cases}\\ \placeholder{}\\ \placeholder{}\end{cases}\\ \placeholder{}\end{cases}\)
\(|_{\larr|_{\placeholder{}}^{\overgroup{\overset{\placeholder{}}{\overrightarrow{\overgroup{\overgroup{|_{\placeholder{}}^{\underset{\text{\placeholder{}}}{\overset{\overgroup{\overgroup{\underset{\text{\placeholder{}}}{\overset{|_{\placeholder{}}^{\hat{\overgroup{\overgroup{\placeholder{}}}}}}{\xrightarrow{}}}}}}{\xrightarrow{}}}}}}}}}}}^{\rarr}\)
\(\infty\begin{cases}\sin\\ \cos\\ \tan\overgroup{\hat{\overline{\frac{\overset{\placeholder{}}{\underrightarrow{\underset{\text{\placeholder{}}}{\overset{|_{\placeholder{}}^{\placeholder{}_{\placeholder{}}^{\placeholder{}}}}{\xrightarrow{}}}}}}{\placeholder{}}}}}\end{cases}\) hay dien vao o vuong
hay giai phep tinh nay
\(\int_0^{\infty}\!\sum{\iint\iiint\oint\prod{\prod_{\placeholder{}}^{\sum_{\placeholder{}}^{\sum{\mathrm{d}x\dfrac{\mathrm{d}}{\mathrm{d}x}\int}}}}}\,\mathrm{d}x\) \(=\)
sa✰ vay \(be\) \(de\left\Vert\int\right\Vert\) a
☠☠☢☢
✰bay gio cho biet vi sao tren troi co sao✰☠