Giới thiệu về bản thân



































Giả thiết đã cho chia cả hai vế cho abc ta có \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{a b} + \frac{1}{b c} + \frac{1}{c a} = 6\). (1)
Mặt khác ta có \(\left(\right. \frac{1}{a} - 1 \left.\right)^{2} \geq 0\)
\(\frac{1}{a^{2}} + 1 \geq \frac{2}{a}\) nên
\(\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \geq 2 \left(\right. \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \left.\right) - 3\) (2)
Lại có \(\frac{1}{a^{2}} + \frac{1}{b^{2}} \geq \frac{2}{a b}\) nên
\(2 \left(\right. \frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \left.\right) \geq 2 \left(\right. \frac{1}{a b} + \frac{1}{b c} + \frac{1}{c a} \left.\right)\) (3)
Cộng (2) và (3) theo vế và sử dụng (1) ta có
\(3 \left(\right. \frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \left.\right) \geq 2 \left(\right. \frac{1}{a b} + \frac{1}{b c} + \frac{1}{c a} + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \left.\right) - 3 = 2.6 - 3 = 9\)
Suy ra \(\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \geq 3\).
Nhân hai vế bất đẳng thức cần chứng minh với \(x + y\) ta được bất đẳng thức tương đương là
\(x^{5} + y^{5} > \left(\right. x^{2} + y^{2} \left.\right) \left(\right. x + y \left.\right)\) (1)
Từ giả thiết \(x > \sqrt{2}\) suy ra \(x^{2} > 2\) suy ra \(x^{5} > 2 x^{3}\), từ đó
\(x^{5} + y^{5} > 2 \left(\right. x^{3} + y^{3} \left.\right)\)
\(= 2 \left(\right. x^{2} - x y + y^{2} \left.\right) \left(\right. x + y \left.\right)\)
\(= \left(\right. x - y \left.\right)^{2} + \left(\right. x^{2} + y^{2} \left.\right) \left(\right. x + y \left.\right) \geq \left(\right. x^{2} + y^{2} \left.\right) \left(\right. x + y \left.\right)\) suy ra (1) (đpcm)
Bất đẳng thức cần chứng minh tương đương với \(2 \left(\right. \frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} \left.\right) \geq 2 \left(\right. \frac{c}{b} + \frac{b}{a} + \frac{a}{c} \left.\right)\)
Xét dấu hiệu \(2 \left(\right. \frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} \left.\right) - 2 \left(\right. \frac{c}{b} + \frac{b}{a} + \frac{a}{c} \left.\right)\)
\(= \left(\right. \frac{a}{b} - \frac{b}{c} \left.\right)^{2} + \left(\right. \frac{b}{c} - \frac{c}{a} \left.\right)^{2} + \left(\right. \frac{c}{a} - \frac{a}{b} \left.\right)^{2} \geq 0\)
Từ đó suy ra đpcm.
Ta có \(x^{2} + y^{2} + x y - 3 x - 3 y + 3\)
\(= \left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 1 \left.\right)^{2} + x y + 1 - x - y\)
\(= \left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 1 \left.\right)^{2} + \left(\right. x - 1 \left.\right) \left(\right. y - 1 \left.\right) \geq 0\)
(do \(a^{2} + a b + b^{2} = \frac{1}{4} \left(\right. 4 a^{2} + 4 a b + 4 b^{2} \left.\right) = \frac{1}{4} \left(\right. 2 a + b \left.\right)^{2} + \frac{3}{4} b^{2} \geq 0\))
Ta có \(\sqrt{a^{2} - a b + b^{2}} = \sqrt{\frac{1}{4} \left(\right. a + b \left.\right)^{2} + \frac{3}{4} \left(\right. a - b \left.\right)^{2}} \&\text{nbsp}; \geq \frac{1}{2} \left(\right. a + b \left.\right)\).
Đẳng thức xảy ra khi và chỉ khi \(a = b\).
Trương tự \(\sqrt{b^{2} - b c + c^{2}} \geq \frac{1}{2} \left(\right. b + c \left.\right)\) và \(\sqrt{c^{2} - c a + c a} \geq \frac{1}{2} \left(\right. c + a \left.\right)\).
Từ đó \(\sqrt{a^{2} - a b + b^{2}} + \sqrt{b^{2} - b c + c^{2}} + \sqrt{c^{2} - c a + a^{2}} \geq \frac{1}{2} \left(\right. a + b + b + c + c + a \left.\right)\)
\(= \left(\right. a + b + c \left.\right) = 3\)
Vậy \(\sqrt{a^{2} - a b + b^{2}} + \sqrt{b^{2} - b c + c^{2}} + \sqrt{c^{2} - c a + a^{2}} \geq 3\).
Đẳng thức xảy ra khi và chỉ khi \(a = b = c = \frac{a + b + c}{3} = 1\) (đpcm)
1) Có \(a^{2} - a b + b^{2} = \frac{1}{4} \left(\right. 4 a^{2} - 4 a b + 4 b^{2} \left.\right) = \frac{1}{4} \left(\right. 2 a - b \left.\right)^{2} + \frac{3}{4} b^{2} \geq 0\).
Đẳng thức xảy ra khi và chỉ khi b=0 và 2a-b=0
hay \(a = b = 0\).
2) Có \(a^{2} - a b + b^{2} = \frac{1}{4} \left(\right. 4 a^{2} - 4 a b + 4 b^{2} \left.\right)\)
\(= \frac{1}{4} \left(\right. a + b \left.\right)^{2} + \frac{3}{4} \left(\right. a - b \left.\right)^{2} \geq \frac{1}{4} \left(\right. a + b \left.\right)^{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a = b\).
Từ giả thiết \(z \geq y \geq x \geq 0\) suy ra \(x \left(\right. x - y \left.\right) \left(\right. x - z \left.\right) \geq 0\) (1).
Hai số hạng còn lại của vế trái bất đẳng thức cần chứng minh có nhân tử chung \(z - y \geq 0\) (2)
và ta có \(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) = \left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right.\) (3)
Mà \(z \geq y \geq x \geq 0\) nên \(z \geq y \geq 0\) và \(z - x \geq y - x \geq 0\), từ đó
\(z \left(\right. z - x \left.\right) \geq y \left(\right. y - x \left.\right)\) nên \(z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \geq 0\) (4)
Từ (2) và (4) suy ra \(\left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right. \geq 0\), kết hợp với (3) suy ra
\(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) \geq 0\) (5).
Từ (1) và (5) suy ra điều phải chứng minh.