
Hồ Hoàng Bảo Ngọc
Giới thiệu về bản thân



































apple
Zalo
Áp dụng định lí Thalès trong tam giác:
⚡ // nên ;
⚡ // nên .
Khi đó, .
là hình thang suy ra // .
Áp dụng hệ quả định lí Thalès, ta có:
Suy ra (đpcm).
Khi đó, là đường trung tuyến của tam giác .
Vì là trọng tâm của tam giác nên điểm nằm trên cạnh .
Ta có hay .
Vì // , theo định lí Thalès, ta suy ra: .
Ta có (vì là trung điểm của cạnh ) nên .
Do đó (đpcm).
Trong tam giác , ta có: // (gt)
Suy ra (hệ quả định lí Thalès) (1)
Trong tam giác , ta có: // (gt)
Suy ra (hệ quả định lí Thalès) (2)
Lại có: // (gt); // (gt)
Suy ra //
Trong tam giác , ta có: // (chứng minh trên)
Suy ra (định lí Thalès) (3)
Từ (1), (2) và (3) suy ra MN = PQ$ (đpcm).
Xét tam giác có và nên suy ra // .
Theo hệ quả định lí Thalès, ta có:
Suy ra
.
b ơi ở câu 1 sao lại là sitting ạ bạn gthich giúp mk vs
a) ABCD là hình bình hành nên AD = BC và AD // BC.
Mà E là trung điểm của AD nên AE = ED;
F là trung điểm của BC nên BF = FC.
Suy ra DE = BF.
Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết).
b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD.
Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của BD nên O là trung điểm của EF.
Vậy ba điểm E, O, F thẳng hàng