Giới thiệu về bản thân
Xét tam giác \(A B C\), áo dụng tính chất tia phân giác trong tam giác, ta có:
\(\frac{A M}{M B} = \frac{A C}{C B} = \frac{A B}{C B} = \frac{A N}{N C} \left(\right. = \frac{b}{a} \left.\right)\)
Vậy \(M N\) // \(B C\) (Định lí đảo của định lí Thalès)
Suy ra \(\frac{M N}{B C} = \frac{A M}{A B} = \frac{b}{b + a}\) (Định lí Thalès)
Vậy nên \(M N = \frac{a b}{a + b} .\)
Xét tam giác \(A B C\), áo dụng tính chất tia phân giác trong tam giác, ta có:
\(\frac{A M}{M B} = \frac{A C}{C B} = \frac{A B}{C B} = \frac{A N}{N C} \left(\right. = \frac{b}{a} \left.\right)\)
Vậy \(M N\) // \(B C\) (Định lí đảo của định lí Thalès)
Suy ra \(\frac{M N}{B C} = \frac{A M}{A B} = \frac{b}{b + a}\) (Định lí Thalès)
Vậy nên \(M N = \frac{a b}{a + b} .\)
a) Vì \(B M\), \(C N\) là các đường trung tuyến của \(\Delta A B C\) nên \(M A = M C\), \(N A = N B\).
Do đó \(M N\) là đường trung bình của \(\Delta \&\text{nbsp}; A B C\), suy ra \(M N\) // \(B C\). (1)
Ta có \(D E\) là đường trung bình của \(\Delta \&\text{nbsp}; G B C\) nên \(D E\) // \(B C\). (2)
Từ (1) và (2) suy ra \(M N\) // \(D E\).
b) Xét \(\Delta \&\text{nbsp}; A B G\), ta có \(N D\) là đường trung bình.
Xét \(\Delta \&\text{nbsp}; A C G\), ta có \(M E\) là đường trung bình.
Do đó \(N D\) // \(A G\), \(M E\) // \(A G\).
Suy ra \(N D\) // \(M E\)
a) Qua \(D\) vẽ một đường thẳng song song với \(B M\) cắt \(A C\) tại \(N\).
Xét \(\Delta \&\text{nbsp}; M B C\) có \(D B = D C\) và \(D N\) // \(B M\) nên \(M N = N C = \frac{1}{2} M C\) (định lí đường trung bình của tam giác).
Mặt khác \(A M = \frac{1}{2} M C\), do đó \(A M = M N = \frac{1}{2} M C\).
Xét \(\Delta \&\text{nbsp}; A N D\) có \(A M = M N\) và \(B M\) // \(D N\) nên \(O A = O D\) hay \(O\) là trung điểm của \(A D\).
b) Xét \(\Delta \&\text{nbsp}; A N D\) có \(O M\) là đường trung bình nên \(O M = \frac{1}{2} D N\). (1)
Xét \(\Delta \&\text{nbsp}; M B C\) có \(D N\) là đường trung bình nên \(D N = \frac{1}{2} B M\). (2)
Từ (1) và (2) suy ra \(O M = \frac{1}{4} B M\).
a) Kẻ \(M N\) // \(B D\), \(N \in A C\).
\(M N\) là đường trung bình trong \(\triangle C B D\) (chưa chặt chẽ)
Suy ra \(N\) là trung điểm của \(C D\) (1).
\(ID\) là đường trung bình trong \(\triangle A M N\)
Suy ra \(D\) là trung điểm của \(A N\) (2). (chưa chặt chẽ)
Từ (1) và (2) suy ra \(A D = \frac{1}{2} D C\).
b) Có \(I D = \frac{1}{2} M N\); \(M N = \frac{1}{2} B D\), nên \(B D = I D\).
Xét tam giác \(A B C\) có \(B C \bot \&\text{nbsp}; A B^{'}\) và \(B^{'} C^{'} \bot A B^{'}\) nên suy ra \(B C\) // \(B^{'} C^{'}\).
Theo hệ quả định lí Thalès, ta có: \(\frac{A B}{A B^{'}} \&\text{nbsp}; = \frac{B C}{B C^{'}}\)
Suy ra \(\frac{x}{x + h} \&\text{nbsp}; = \frac{a}{a^{'}}\)
\(a^{'} . x = a \left(\right. x + h \left.\right)\)
\(a^{'} . x - a x = a h\)
\(x \left(\right. a^{'} - a \left.\right) = a h\)
\(x = \frac{a h}{a^{'} \&\text{nbsp}; - a}\).
Trong tam giác \(A D B\), ta có: \(M N\) // \(A B\) (gt)
Suy ra \(\frac{D N}{D B} \&\text{nbsp}; = \frac{M N}{A B}\) (hệ quả định lí Thalès) (1)
Trong tam giác \(A C B\), ta có: \(P Q\) // \(A B\) (gt)
Suy ra \(\frac{C Q}{C B}=\frac{P Q}{A B}\) (hệ quả định lí Thalès) (2)
Lại có: \(N Q\) // \(A B\) (gt); \(A B\) // \(C D\) (gt)
Suy ra \(N Q\) // \(C D\)
Trong tam giác \(B D C\), ta có: \(N Q\) // \(C D\) (chứng minh trên)
Suy ra \(\frac{D N}{D B}=\frac{C Q}{C B}\) (định lí Thalès) (3)
Từ (1), (2) và (3) suy ra \(\frac{M N}{A B}=\frac{P Q}{A B};hay\)MN = PQ(đpcm)
Khi đó, \(A D\) là đường trung tuyến của tam giác \(A B C\).
Vì \(G\) là trọng tâm của tam giác \(A B C\) nên điểm \(G\) nằm trên cạnh \(A D\).
Ta có \(\frac{A G}{A D} = \frac{2}{3}\) hay \(A G = \frac{2}{3} A D\).
Vì \(M G\) // \(A B\), theo định lí Thalès, ta suy ra: \(\frac{A G}{A D} = \frac{B M}{B D} = \frac{2}{3}\).
Ta có \(B D = C D\) (vì \(D\) là trung điểm của cạnh \(B C\)) nên \(\frac{B M}{B C} = \frac{B M}{2 B D} = \frac{2}{2.3} = \frac{1}{3}\).
Do đó \(B M = \frac{1}{3} B C\) (đpcm).
ABCD là hình thang suy ra \(A B\) // \(C D\).
Áp dụng hệ quả định lí Thalès, ta có: \(\frac{O A}{O C} \&\text{nbsp}; = \frac{O B}{O D}\)
Suy ra \(O A . O D = O B . O C\) (đpcm).
Áp dụng định lí Thalès trong tam giác:
\(D E\) // \(A C\) nên \(\frac{A E}{A B} = \frac{C D}{B C}\);
\(D F\) // \(A C\) nên \(\frac{A F}{A C} = \frac{B D}{B C}\).
Khi đó, \(\frac{A E}{A B} + \frac{A F}{A C} = \frac{C D}{B C} + \frac{B D}{B C} = \frac{B C}{B C} = 1\).