![](/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
Bài 1:
a) Xét tam giác ABM và tam giác ACM
có: AB = AC (gt)
góc BAM = góc CAM (gt)
AM là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Xét tam giác ABC
có: AB = AC
=> tam giác ABC cân tại A ( định lí tam giác cân)
mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)
=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)
Bài 2:
a) Xét tam giác ABD và tam giác EBD
có: AB = EB (gt)
góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> góc BAD = góc BED ( 2 góc tương ứng)
mà góc BAD = 90 độ ( tam giác ABC vuông tại A)
=> góc BED = 90 độ