Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
tự kẻ hình nha
a) xét tam giác BMD và tam giác CMA có
AM=MD(gt)
BM=CM(gt)
AMC=BMD( đối đỉnh)
=> tam giác BMD= tam giác CMA(cgc)
=> BDM=MAC( hai góc tương ứng)
mà BDM so le trong với MAC=> AC//BD, BA vuông góc với AC=> BA vuông góc với BD=> ABD=90 độ
b) từ tam giác BMD= tam giác CMA=> BD=AC( hai cạnh tương ứng)
xét tam giác ABC và tam giác BAD có
BD=AC(cmt)
AB chung
BAC=ABD(=90 độ)
=> tam giác ABC= tam giác BAD(cgc)
c) từ tam giác ABC= tam giác BAD => AD=BC( hai cạnh tương ứng)
mà AM=MD=> M là trung điểm của AD
và M là trung điểm của BC=> AM=MD=BM=CM
=> 2AM=BM+CM
=> 2AM=BC
=> AM=1/2BC
![](/images/avt/0.png?1311)
Bn tự vẽ hình nhé!
a) Xét ΔAMC và ΔDMB có:
MB = MC ( M là trung điểm của BC )
∠AMC = ∠DMB ( 2 góc đối đỉnh )
MA = MD ( gt )
=> ΔAMC = ΔDMB ( c.g.c )
b) Vì ΔAMC = ΔDMB ( cmt )
=> ∠DAC = ∠ADB ( 2 góc tương ứng )
=> AC // BD ( 2 góc so le trong bằng nhau )
Mà AC ⊥ AB ( ∠ BAC = 900 )
=> AB ⊥ BD ( định lý từ vuông góc đến song song )
=> ∠ ABD = 900
c) Xét Δ ABC và ΔBAD có :
AB chung
∠BAC = ∠ ABD ( = 900)
AC = BC ( ΔAMC = ΔDMB ( cmt )
=> Δ ABC = ΔBAD ( c.g.c)
=> BC = AD ( 2 cạnh t/ứng )
Ta có : MA = MD ( gt )
Mà M nằm giữa 2 điểm A và D
=> M là t/đ của AD
=> AM = 1/2AD
Mà AD = BC ( cmt )
=> AM= 1/2 BC ( đcm )
![](/images/avt/0.png?1311)
x O y A B C D
Giải:
a) Ta có: AC = BD
OA = OB
\(\Rightarrow OA+AC=OB+BD\)
\(\Rightarrow OC=OD\) (*)
Xét \(\Delta OCB,\Delta ODA\) có:
\(OC=OD\) ( theo (*) )
\(\widehat{O}\): góc chung
\(OA=OB\left(gt\right)\)
\(\Rightarrow\Delta OCB=\Delta ODA\left(c-g-c\right)\)
b) Vì \(\Delta OCB=\Delta ODA\)
\(\Rightarrow\widehat{OCB}=\widehat{ODA}\) ( góc t/ứng )
hay \(\widehat{ACE}=\widehat{BDE}\)
\(\Rightarrow\widehat{OAD}=\widehat{ODA}\) ( góc t/ứng )
hay \(\widehat{CAE}=\widehat{DBE}\)
Xét \(\Delta EAC,\Delta EBD\) có:
\(\widehat{ACE}=\widehat{BDE}\) ( cmt )
\(AC=BD\left(gt\right)\)
\(\widehat{CAE}=\widehat{DBE}\) ( cmt )
\(\Rightarrow\Delta EAC=\Delta EBD\left(g-c-g\right)\)
c) Vì \(\Delta EAC=\Delta EBD\)
\(\Rightarrow CE=ED\) ( cạnh t/ứng )
Xét \(\Delta OCE,\Delta ODE\) có:
\(OC=OD\) ( theo phần a )
\(\widehat{OCB}=\widehat{ODE}\) ( theo phần b )
OE: cạnh chung
\(\Delta OCE=\Delta ODE\left(c-g-c\right)\)
\(\Rightarrow\widehat{COE}=\widehat{DOE}\) ( góc t/ứng )
\(\Rightarrow OE\) là tia phân giác của \(\widehat{xOy}\)
Vậy...
Câu 2: gợi ý:
A = ..
=> 3A - A = ...
=> 2A = ...
=> A = ( sử dụng t/c phân phối )
=> A = 1/2 - ...
=> A < 1/2
![](/images/avt/0.png?1311)
Hình tự vẽ nhé:
a) Xét \(\Delta MAC\)và \(\Delta MDB\):
MC=MB(gt)
MA=MD(gt)
\(\widehat{AMC}=\widehat{DMB}\)(đối đỉnh)
\(\Rightarrow\Delta MAC=\Delta MBD\left(c-g-c\right)\)
![](/images/avt/0.png?1311)
GT: Δ ABC vuông tại A
BM = CM
D ϵ tia đối của tia MA sao cgo MA = MD
KL: AD = BC
\(AM=\frac{1}{2}BC\)
Ta có hình vẽ:
A B C M D
Nối đoạn BD
Xét Δ BMD và Δ CMA có:
BM = CM (gt)
BMD = CMA (đối đỉnh)
MD = MA (gt)
Do đó, Δ BMD = Δ CMA (c.g.c)
=> BD = AC (2 cạnh tương ứng) và BDM = MAC (2 góc tương ứng)
Mà BDM và MAC là 2 góc so le trong nên BD // AC
=> BAC + ABD = 180o (trong cùng phía)
=> 90o + ABD = 180o
=> ABD = 180o - 90o = 90o = BAC
Xét Δ ABD và Δ BAC có:
BD = AC (cmt)
ABD = BAC = 90o
AB là cạnh chung
Do đó, Δ ABD = Δ BAC (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Mà AM = MD = \(\frac{1}{2}AD\) (2)
Từ (1) và (2) => \(AM=\frac{1}{2}BC\left(đpcm\right)\)
mình chỉ làm bai 2 thoi
ket qua la 2010/2011
nhớ k nha minh k lai