Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: DF=FE=CE(gt)
mà DF+FE+CE=DC
nên \(DF=FE=CE=\dfrac{DC}{3}\)
Xét tứ giác ABFD có
AB//FD(gt)
AB=FD
Do đó: ABFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác ABEF có
AB//EF(gt)
AB=EF(cmt)
Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AF=BE(Hai cạnh đối)
c) Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
Suy ra: AE=BC
a) AE=FC
AB=CD
=> DF=EB
AD=BC
góc ADF=EBC
=> tam giác ADF = CBE ( c-g-c)
=> AF=EC
AE = CF (gt)
mà AE // CF (ABCD là hình chữ nhật)
=> AECF là hình bình hành
=> FA // CE
=> AFD = ECF (2 góc đồng vị)
mà ECF = CEB (2 góc so le trong, AB // CD)
=> AFD = CEB (1)
AB = CD (ABCD là hình chữ nhật)
mà AE = CF (gt)
=> AB - AE = CD - CF
=> EB = DF (2)
Xét tam giác NEB và tam giác MFD có:
NEB = MFD (theo 1)
EB = FD (theo 2)
EBN = FDM (2 góc so le trong, AB // CD)
=> Tam giác NEB = Tam giác MFD (g.c.g)
=> BN = DM (2 cạnh tương ứng)
O là trung điểm của BD (3)
=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)
=> O là trung điểm của EF (AECF là hình bình hành) (5)
AEI = ABD (2 góc so le trong, EI // BD)
CFK = CDB (2 góc so le trong, FK // BD)
mà ABD = CBD (2 góc so le trong, AB // CD)
=> AEI = CFK (6)
EI // BD (gt)
FK // DB (gt)
=> EI // FK (7)
Xét tam giác EAI và tam giác FCK có:
IEA = KFC (theo 6)
EA = FC (gt)
EAI = FCK (= 900)
=> Tam giác EAI = Tam giác FCK (g.c.g)
=> EI = FK (2 cạnh tương ứng)
mà EI // FK (theo 7)
=> EIFK là hình bình hành
mà O là trung điểm của EF (theo 5)
=> O là trung điểm của IK (8)
Từ (3), (4), (5) và (8)
=> AC, EF, IK đồng quy tại O là trung điểm của BD
O là trung điểm của AC và BD
=> OA = OC = \(\frac{AC}{2}\)
OB = OD = \(\frac{BD}{2}\)
mà AC = BD (ABCD là hình chữ nhật)
=> OA = OD = OB = OC
=> Tam giác OAD cân tại O
mà AOD = 600
=> Tam giác OAD đều
=> AD = OA = OD
mà AD = 1 cm
AD = BC (ABCD là hình chữ nhật)
=> OA = OD = OC = OB = BC = 1 cm
=> AC = 2OA = 2 . 1 = 2 cm
Xét tam giác BAC vuông tại B có:
\(AC^2=BA^2+BC^2\) (định lý Pytago)
\(AB^2=AC^2-BC^2\)
\(=2^2-1^2\)
\(=4-1\)
= 3
\(AB=\sqrt{3}\)
\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)
a: Xét ΔAEB vuông tại E và ΔAFD vuông tại F có
AB=AD
\(\widehat{ABE}=\widehat{ADF}\)(ABCD là hình thoi)
Do đó: ΔABE=ΔADF
=>AE=AF
b: Ta có: ΔABE=ΔADF
=>BE=DF
Ta có: CE+EB=CB
CF+FD=CD
mà CB=CD và BE=FD
nên CE=CF
c: Xét ΔCBD có \(\dfrac{CE}{CB}=\dfrac{CF}{CD}\)
nên EF//BD
đây là nơi để các bạn học sinh có thể giúp đỡ nhau nếu gặp những thắc mắc hoặc vấn đề gì. Sao bn '' Quicky_Birthday'' lại phát ngôn những từ dơ v