Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{3}{4}\times4=\frac{3\times4+3}{4}\times4=\frac{15}{4}\times4=\frac{15\times4}{4}=15\)
\(4\frac{3}{2}\div1\frac{1}{2}=\frac{4\times2+3}{2}\div\frac{1\times2+1}{2}=\frac{11}{2}\div\frac{3}{2}=\frac{11}{2}\times\frac{2}{3}=\frac{11}{3}\)
\(4\frac{3}{4}+2\frac{3}{2}=\frac{4\times4+3}{4}+\frac{2\times2+3}{2}=\frac{19}{4}+\frac{7}{2}=\frac{19}{4}+\frac{14}{4}=\frac{33}{4}\)
\(3\frac{8}{6}-4\frac{1}{3}=\frac{3\times8+6}{6}-\frac{4\times3+1}{3}=\frac{30}{6}-\frac{13}{3}=\frac{30}{6}-\frac{26}{6}=\frac{4}{6}=\frac{2}{3}\)
\(3\frac{2}{4}\)x 4 = \(\frac{14}{4}\)x 4 = \(\frac{56}{4}\)
\(4\frac{3}{2}\): \(1\frac{1}{2}\)= \(\frac{11}{2}\): \(\frac{3}{2}\)= \(\frac{11}{2}\)x \(\frac{2}{3}\)= \(\frac{22}{6}\)= \(\frac{11}{3}\)
\(4\frac{3}{4}\)+ \(2\frac{3}{2}\)= \(\frac{11}{4}\)+ \(\frac{7}{2}\)= \(\frac{25}{4}\)= 6,25
\(3\frac{8}{6}\)- \(4\frac{1}{3}\)= \(\frac{13}{3}\)- \(\frac{13}{3}\)= 0
\(1\frac{1}{3}\times1\frac{1}{4}\times1\frac{1}{5}\times1\frac{1}{6}\times1\frac{1}{7}\times1\frac{1}{8}\)
\(=\)\(\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times\frac{9}{8}\)
\(=\)\(\frac{9}{3}\)
\(=\)\(3\)
\(1\frac{1}{3}\times1\frac{1}{4}\times1\frac{1}{5}\times1\frac{1}{6}\times1\frac{1}{7}\times1\frac{1}{8}\)
\(=\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times\frac{9}{8}\)
Rút gọn phép tính trên ta được :
\(=\frac{9}{3}=3\)
Đây mà toán lớp 5 à.
Áp dụng công thức
\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\) ta được
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)
Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{51}\)
\(=1-\frac{2}{51}=\frac{49}{51}\)
\(\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{2014}\right)\)
A = \(\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2012}{2013}x\frac{2013}{2014}\)
A = \(\frac{2x3x4x...x2012x2013}{3x4x5x...x2013x2014}\)
a = \(\frac{2}{2014}=\frac{1}{1007}\)
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{10}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{11}}=\frac{2^{11}-1}{2^{11}}=\frac{2047}{2048}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(2A-A=\left(1+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+...+\frac{1}{2048}\right)\)
\(A=1-\frac{1}{2048}=\frac{2047}{2048}\)
Sửa lại đề: \(A=\frac12+\frac14+\frac18+\cdots+\frac{1}{1024}\)
\(2A=1+\frac12+\frac14+\cdots+\frac{1}{512}\)
\(2A-A=\left(1+\frac12+\frac14+\cdots+\frac{1}{512}\right)-\left(\frac12+\frac14+\frac18+\cdots+\frac{1}{1024}\right)\)
\(A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)