Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, dcba = 1000d +100c +10b +a=(1000d+96c+8b)+(a+2b+4c)
mà 100d +96c +8b chia hết cho 8
suy ra a+2b+4c chia hết cho 8(đpcm)
Ta có : \(n=\overline{dcba}=1000d+100c+10b+a\)
\(=\left(1000d+100c+8b\right)+\left(2b+a\right)\)
\(=4\left(250d+25c+2b\right)+\left(2b+a\right)\)
Vì n chia hết cho 4 và 4(250d+25c+2b) chia hết cho 4 nên a+2b chia hết cho 4.
câu b) tương tự, ta có :\(n=8\left(125d+12c+b\right)+\left(a+2b+4c\right)\)
mà n chia hết cho 8 ; 8(125d+12c+b) chia hết cho 8 => a+2b+4c chia hết cho 8.
câu c) : \(n=16\left(62d+6c+\frac{b}{2}\right)+\left(a+2b+4c+8d\right)\)
vì b chẵn => 16(62d+6c+b/2) chia hết cho 16 mà n chia hết cho 16; => a+2b+4c+8d chia hết cho 16.
a) \(abcdeg=1000abc+deg\)
\(=1001abc-abc+deg\)
\(=1001abc-\left(abc-deg\right)\)
\(=abc\cdot13\cdot77-\left(abc-deg\right)\)
Vì abc . 13 . 77 chia hết cho 13 ; abc - deg chia hết cho 13
=> abcdeg chia hết cho 13 ( đpcm )
b) Ta có : \(abc\) chia hết cho 29\(=>\left(1000a+100b+10c+d\right)\) chia hết cho 29
\(=>2000a+200b+20c+2d\) chia hết cho 29
\(=>\left(2001a+203b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>\left(29\cdot69a+29\cdot7b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>29\cdot\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
Vì \(29\cdot\left(69a+7b+c+d\right)\) chia hết cho 29 và \(29.\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>a+3b+9c+27d\) chia hết cho 29
a) `N vdots 4` khi `overline{ba} vdots 4`
`=> 10b + a vdots 4`
`=> 2b + 8b + a vdots 4`
Mà `8b vdots 4`
`=> 2b + a vdots 4 (đpcm)`
Không trả lời được theo ý mình thì đừng có mà dùng mấy cái trên mạng chưa học cho vào đây bạn hiểu không?