Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F H K
a, Áp dụng Đ. L. py-ta-go vào tg ABC vuông tạo A, có:
BC2=AC2+AB2.
=>BC2=82+62.
=64+36.
=100.
=>BC=10cm.
b, Vì góc BAC+ góc CAF=180o(kề bù)
=>góc CAF=180o-góc BAC
=180o-90o
=90o
Xét tg ABC và tg AFC, có:
AC chung
góc BAC= góc CAF(=90o)
AB=AF(gt)
=>tg ABC= tg AFC(c. g. c)
c, Vì tg ABC= tg AFC(cm câu b)
=>CF=CB(2 cạnh tương ứng)
=>tg CBF cân tại C.
d, Xét tg AHC và tg AKC, có:
góc HCA= góc KCA(2 góc tương ứng)
AC chung
góc AHC= góc AKC(2 góc tương ứng)
=>tg AHC= tg AKC(ch-gn)
=>CH=CK(2 cạnh tương ứng)
=>tg HKC cân tại C.
Ta có: tg HKC cân tại C, tg BFC cân tại C.
=> góc B= góc F= góc CHK= góc CKH.
Mà góc B và góc CHK ở vị trí đong vị, góc F và góc CKH cũng ở vị trí đồng vị.
=>BF//HK(đpcm)
a, xét tg BEM và tg CFM có : ^CFM = ^BEM = 90
^ABC = ^ACCB do tg ABC cân tại A (gt)
CM = BM do M là trung điểm của BC (gt)
=> tg BEM = tg CFM (ch-gn) (1)
b, (1) => CF = BE (đn)
AB = AC do tg ABC cân tại A (gt)
CF + AF = AC
BE + AE = AB
=> AF = AE
Bài giải
A B C M E F G
a, Xét 2 tam giác vuông BME và CMF có :
MB = MC ( AM là đường trung tuyến ) : cạnh huyền
\(\widehat{B}=\widehat{C}\) ( tam giác ABC cân ) : góc nhọn
\(\Rightarrow\text{ }\Delta BME =\Delta CMF ( ch-gn ) \) ( 1 )
b, Từ ( 1 ) => BE = CF ( 2 cạnh tương ứng )
Mà AB = AE + BE
AC = AF + CF
Mà BE = CF => AE = AF
c, Ta có :
\(AG=BG=\frac{2}{3}AM\text{ }\Rightarrow\text{ }\frac{AG+BG}{2}=\frac{\frac{2}{3}AM+\frac{2}{3}AM}{2}=\frac{\frac{4}{3}AM}{2}=\frac{3}{2}AM>BG\)
\(\Rightarrow\text{ }ĐPCM\)
Lời giải
a Vì AF⊥BC tại F nên AF là đường cao của △ABC
Mà △ABC đều
nên AF là đường trung trực của cạnh BC
⇒ BF = CF (đpcm)
b Vì BG⊥AC tại G nên BG là đường cao của △ABC
Mà △ABC đều
nên BG là đường phân giác của ∠ABC
⇒∠ABG = ∠CBG (đpcm)
chúc bạn học tốt