Giới thiệu về bản thân



































a) Do \(A B C D\) là hình bình hành nên \(A D\) // \(B C\) và \(A D = B C\).
Do \(A D\) // \(B C\) nên \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\) (so le trong)
Xét \(\Delta A D H\) và \(\Delta C B K\) có:
\(\hat{A H D} \&\text{nbsp}; = \hat{C K B} = 9 0^{\circ}\);
\(A D = B C\) (chứng minh trên);
\(\hat{A D H} \&\text{nbsp}; = \hat{C B K}\) (do \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\)).
Do đó \(\Delta \&\text{nbsp}; A D H = \Delta \&\text{nbsp}; C B K\) (cạnh huyền – góc nhọn).
Suy ra \(A H = C K\) (hai cạnh tương ứng).
Ta có \(A H \bot \&\text{nbsp}; D B\) và \(C K \bot \&\text{nbsp}; D B\) nên \(A H\) // \(C K\).
Tứ giác \(A H C K\) có \(A H\) // \(C K\) và \(A H = C K\) nên \(A H C K\) là hình bình hành (dấu hiệu nhận biết).
b) Do \(A H C K\) là hình bình hành (câu a) nên hai đường chéo \(A C\) và \(H K\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(H K\) (giả thiết) nên \(I\) là trung điểm của \(A C\).
Do \(A B C D\) là hình bình hành nên hai đường chéo \(A C\) và \(B D\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(A C\) nên \(I\) là trung điểm của \(B D\), hay \(I B = I D\).
dễ nhmla dễ thở máy oxy
lớp 5 mà
U_U