Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Vũ Đức Bình Minh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Do \(A B C D\) là hình bình hành nên \(A D\) // \(B C\) và \(A D = B C\).

Do \(A D\) // \(B C\) nên \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\) (so le trong)

Xét \(\Delta A D H\) và \(\Delta C B K\) có:

     \(\hat{A H D} \&\text{nbsp}; = \hat{C K B} = 9 0^{\circ}\);

     \(A D = B C\) (chứng minh trên);

     \(\hat{A D H} \&\text{nbsp}; = \hat{C B K}\) (do \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\)).

Do đó \(\Delta \&\text{nbsp}; A D H = \Delta \&\text{nbsp}; C B K\) (cạnh huyền – góc nhọn).

Suy ra \(A H = C K\) (hai cạnh tương ứng).

Ta có \(A H \bot \&\text{nbsp}; D B\) và \(C K \bot \&\text{nbsp}; D B\) nên \(A H\) // \(C K\).

Tứ giác \(A H C K\) có \(A H\) // \(C K\) và \(A H = C K\) nên \(A H C K\) là hình bình hành (dấu hiệu nhận biết).

b) Do \(A H C K\) là hình bình hành (câu a) nên hai đường chéo \(A C\) và \(H K\) cắt nhau tại trung điểm của mỗi đường.

Mà \(I\) là trung điểm của \(H K\) (giả thiết) nên \(I\) là trung điểm của \(A C\).

Do \(A B C D\) là hình bình hành nên hai đường chéo \(A C\) và \(B D\) cắt nhau tại trung điểm của mỗi đường.

Mà \(I\) là trung điểm của \(A C\) nên \(I\) là trung điểm của \(B D\), hay \(I B = I D\).