Giới thiệu về bản thân
`1 + 2 + 3 + ... + 98+ 99 + 100`
Đặt `1 + 2 + 3 + ... + 98+ 99 + 100` là `A`
Số số hạng của `A` là :
`(100 - 1) : 1 + 1 = 100(` số hạng `)`
Tổng `A` là :
`(100 + 1)` x `100 : 2 = 5050`
Vậy ...
\(9+\left(-10\right)+11+\left(-12\right)+13+\left(-14\right)+15+\left(-16\right)\)
\(=\left\lbrack9+\left(-10\right)\right\rbrack+\left\lbrack11+\left(-12\right)\right\rbrack+\left\lbrack13+\left(-14\right)\right\rbrack+\left\lbrack15+\left(-16\right)\right\rbrack\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).4=\left(-4\right)\)
\(x+\left(-5\right)=-18\)
=>x - 5 =-18
=> x = -18 + 5
=>x = -13
vậy x=-13
\(a)x^2-8x=x\left(x-8\right)\)
\(b\) \()x^2+16x=x\left(x+16\right)\)
\(c)3xy^2-4y\) \(=y.\left(3xy-4\right)\)
\(d)7x^2y+9x=x.\left(7xy+9\right)\)
gỡ cái gì á bạn?
\(A=\frac12+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{100}}\)
Ta có:
\(2A=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{99}}\right)-\left(\frac12+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
Mà \(\frac{1}{2^{100}}<1\)
\(\rArr1-\frac{1}{2^{100}}<1\) hay \(A<1\)
Vậy \(A<1\)
tìm x đúng ko ạ?
\(\#2k12\)
\(\frac35:\left(\frac{-1}{15}-\frac16\right)+\frac35:\left(\frac{-1}{3}-1\frac{1}{15}\right)\)
\(=\frac35:\left\lbrack\left(\frac{-1}{15}-\frac16\right)+\left(-\frac13-1\frac{1}{15}\right)\right\rbrack\)
\(=\frac35:\left\lbrack\left(\frac{-1}{15}-\frac16\right)+\left(-\frac13-\frac{16}{15}\right)\right\rbrack\)
\(=\frac35:\left\lbrack\frac{-1}{15}-\frac16-\frac13-\frac{16}{15}\right\rbrack\)
\(=\frac35:\left\lbrack\left(\frac{-1}{15}-\frac{16}{15}\right)-\left(\frac16+\frac13\right)\right\rbrack\)
\(=\frac35:\left\lbrack\frac{-17}{15}-\frac12\right\rbrack\)
\(=\frac35:\left(-\frac{49}{30}\right)\)
\(=\frac35.\left(-\frac{30}{49}\right)\)
\(=3.\left(-\frac{6}{49}\right)\)
\(=-\frac{18}{49}\)
sai bảo mình
Bạn nhắn tin riêng với cô về vấn đề này chưa?
Bạn muốn hỏi gì ?
(Uầy , chiều vừa mới học xong :D)