\(\dfrac{15}{2}-\left|2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

a) Vì \(\left|2x-3\right|\ge0\) nên \(-\left|2x-3\right|\le0\)

\(\Rightarrow\dfrac{15}{2}-\left|2x-3\right|\le\dfrac{15}{2}\)

Để \(A\) đạt GTLN thì \(-\left|2x-3\right|=0\) hay GTLN của \(A=\dfrac{5}{2}\)

b) Ta có: \(-\left|11+5x\right|\le0\)

\(\Rightarrow-17-\left|11+5x\right|\le-17\)

Để \(B\) đạt GTLN thì \(-\left|11+5x\right|=0\) hay GTLN của \(B=-17\)

c) Ta có: \(\left\{{}\begin{matrix}\left|3x+2\right|\ge0\\\left|3x-7\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\left|3x+2\right|\le0\\-\left|3x-7\right|\le0\end{matrix}\right.\)

\(\Rightarrow12-\left|3x+2\right|-\left|3x-7\right|\le12\)

Để \(C\) đạt GTLN thì: \(\left\{{}\begin{matrix}-\left|3x+2\right|=0\\-\left|3x-7\right|=0\end{matrix}\right.\) hay GTLN của \(C=12\)

20 tháng 12 2016

a) Ta có -/2-3x/ luôn nhỏ hơn hoặc bằng 0

Suy ra -/2-3x/ sẽ nhỏ hơn hoặc = 1/2

Suy ra để C lớn nhất thì -/2-3x/=0

Suy ra C lớn nhất =1/2

b) Ta có : /2x+4/ luôn lớn hơn hoặc =0

Suy ra -3-/2x+4/ nhỏ hơn hoặc = -3

Suy ra để D lớn nhất thì /2x+4/=0

Suy ra D lớn nhất = -3-0=-3

Giá trị lớn nhật của D là -3

20 tháng 12 2016

uh, kcj

29 tháng 6 2016

Câu b) thôi nha: 5.5

5 tháng 4 2018

a,

vì \(\left|2x-1\right|\ge0\Rightarrow A=5-\left|2x-1\right|\le5\)

A đạt giá trị lớn nhất <=> A=5-|2x-1|=5

<=>2x-1=0

<=>2x=1

<=>x=1/2

vậy A đạt giá trị lớn nhất là 5 khi x=1/2

16 tháng 7 2019

b) Vì \(-|3x+2|\le0;\forall\text{​​}x\)

\(\Rightarrow-|3x+2|+11\le0+11;\forall x\)

Dấu "=" xảy ra\(\Leftrightarrow|3x+2|=0\)

                       \(\Leftrightarrow x=\frac{-2}{3}\)

Vậy MAX B =11 \(\Leftrightarrow x=\frac{-2}{3}\)

8 tháng 7 2021

Vì x2 ≥ 0 ∀ x 

=> -5x2 ≤ 0

=> -5x2 + 9 ≤ 9

Để A = -5x2 + 9 nhận giá trị lớn nhất thì -5x2 + 9 = 9 

=> A = 9

Vì ( 3x - 2 )2 ≥ 0

=> 5 - ( 3x - 2 )2 ≤ 5

Để B = 5 - ( 3x - 2 )2 nhận giá trị lớn nhất thì 5 - ( 3x - 2 )2 = 5 

=> B = 5

Để D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}\)nhận giá trị lớn nhất thì ( 2 - x )2 + 1 nhận giá trị nhỏ nhất

Mà ( 2 - x )2 + 1 ≠ 0

=> ( 2 - x )2 + 1 = 1

=> D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}=\frac{\text{2022}}{\text{1}}\)= 2022 

8 tháng 7 2021

Ta có \(-5x^2\le0\Leftrightarrow-5x^2+9\le9\)  

=> Max A = 9 

Dấu "=" xảy ra <=> x2 = 0 => x = 0

Vậy Max A = 9 <=> x = 0

b) Ta có \(-\left(3x-2\right)^2\le0\forall x\Rightarrow5-\left(3x-2\right)^2\le5\)

=> Max B = 5 

Dấu "=" xảy ra <=> 3x - 2 = 0 <=> x = 2/3

Vậy Max = 5 <=> x = 2/3

c) Ta có \(2x^2+3\ge3\forall x\Rightarrow\frac{1}{2x^2+3}\le\frac{1}{3}\)

=> Max C = 1/3 

Dấu "=" xảy  ra <=> x = 0 => x = 0

Vậy Max C = 1/3 <=> x = 0

d) Ta có \(\left(2-x\right)^2+1\ge1\forall x\Leftrightarrow\frac{2022}{\left(2-x\right)^2+1}\le2022\)

=> Max D = 2022

 Dấu "=" xảy ra <=> 2 - x = 0 => x = 2

Vậy Max D = 2022 <=> x = 2

31 tháng 7 2016

a) x2 + 5x = x(x + 5) < 0 khi x và x + 5 khác dấu mà x < x + 5 nên x < 0 ; x + 5 > 0

=> -5 < x < 0 (x\(\in Q\))

b) 3(2x + 3)(3x - 5) < 0 khi 2x + 3 và 3x - 5 khác dấu.Ta có :

\(\hept{\begin{cases}2x+3< 0\Rightarrow2x< -3\Rightarrow x< \frac{-3}{2}\\3x-5>0\Rightarrow3x>5\Rightarrow x>\frac{5}{3}\end{cases}}\)(vô lý)

-\(\hept{\begin{cases}2x+3>0\Rightarrow2x>-3\Rightarrow x>\frac{-3}{2}\\3x-5< 0\Rightarrow3x< 5\Rightarrow x< \frac{5}{3}\end{cases}}\)=> \(\frac{-3}{2}< x< \frac{5}{3}\left(x\in Q\right)\)

\(x^2+5x< 0\)

\(\Rightarrow x\left(x+5\right)< 0\)

Th1 : \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-5\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -5\end{cases}}}\)

Câu b tương tự nha