K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Làm tương tự nha ;))))

https://olm.vn//?g=bookstore.testbook&id=330 

18 tháng 7 2020

A B C D M 1 2 3 4

A) XÉT \(\Delta BDA\)\(\Delta BCA\)

\(DA=CA\left(GT\right)\)

\(\widehat{BAD}=\widehat{BAC}=90^o\)

AB LÀ CẠNH CHUNG

\(\Rightarrow\Delta BDA=\Delta BCA\left(C-G-G\right)\)

=>\(\widehat{B_1}=\widehat{B_2}\)

=> BA LÀ PHÂN GIÁC CỦA \(\widehat{CBD}\)

B)

TA CÓ

 \(\widehat{B_2}+\widehat{B_4}=180^o\left(KB\right)\)

\(\widehat{B_1}+\widehat{B_3}=180^o\left(KB\right)\)

MÀ \(\widehat{B_1}=\widehat{B_2}\)

\(\Rightarrow\widehat{B_4}=\widehat{B_3}\)

XÉT \(\Delta MBD\)\(\Delta MBC\)

MB LÀ CẠNH CHUNG

\(\widehat{B_4}=\widehat{B_3}\left(CMT\right)\)

\(BD=BC\left(\Delta BDA=\Delta BCA\right)\)

=>\(\Delta MBD\)=\(\Delta MBC\)(C-G-C)

Câu a: Chứng minh tam giác ABH = tam giác ACH

Ta có tam giác ABC cân tại A, tức là ( AB = AC ).
Điểm ( H ) là trung điểm của đoạn ( BC ), nên ( BH = HC ).
Xét hai tam giác ( ABH ) và ( ACH ):

  • ( AB = AC ) (giả thiết tam giác ABC cân tại A).
  • ( BH = HC ) (do ( H ) là trung điểm của ( BC )).
  • ( \angle ABH = \angle ACH ) (đối đỉnh).
    Vậy theo cạnh - góc - cạnh (c.g.c), ta có:
    [ \triangle ABH = \triangle ACH ]

Câu b: Chứng minh ( \angle ABM = \angle ACM ) và tam giác MBC cân

  • Vì ( M ) nằm trên tia phân giác của góc ( ABC ), ta có: [ \angle ABM = \angle CBM ]
  • Mặt khác, do tam giác ( ABH ) và ( ACH ) bằng nhau (chứng minh ở câu a), nên: [ \angle CBM = \angle ACM ] Suy ra:
    [ \angle ABM = \angle ACM ]
  • Xét tam giác ( MBC ):
  • ( \angle CBM = \angle BCM ) (do ( M ) nằm trên tia phân giác của ( \angle ABC )).
  • ( MB = MC ) (cạnh đối diện hai góc bằng nhau).
    Vậy tam giác ( MBC ) cân tại ( M ).

Câu c: Chứng minh ( AB = AN )

  • Do đường thẳng đi qua ( A ) song song với ( BC ) cắt tia ( BM ) tại ( N ), ta có:
    [ AN \parallel BC ]
  • Xét tam giác ( ABN ), có ( AN \parallel BC ) nên theo định lý đường trung bình của tam giác, ta có:
    [ AB = AN ]

Câu d: Chứng minh ( MC \perp CN )

  • Từ câu b, tam giác ( MBC ) cân tại ( M ) nên ( MC = MB ).
  • Do ( AN \parallel BC ), nên góc ( MCN ) bằng góc ( NBC ).
  • Mà ( \angle NBC = 90^\circ ) (do đường thẳng ( AN ) song song với ( BC )).
  • Vậy suy ra ( MC \perp CN ).