\(10^n-1\) chia hết cho 9

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

10 đồng dư 1  (mod9)

=> 10-1 chia hết cho 9

=> \(10^n-1\) chia hết cho 9

tíc mình nha

17 tháng 8 2016

10 đồng dư với 9 là 1 

10 - 1 chia hết cho 9 = 9 chia hết cho 9 

Vậy \(10^n-1\) chia hết cho 9 

k nha

2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)

\(=9^n\cdot80+3^n\cdot10\)

\(=10\left(9^n\cdot8+3^n\right)⋮10\)

20 tháng 7 2015

a/  3636 - 910. Vì cả hai lũy thừa cùng chia hết cho 9 nên 3636 - 910 cũng chia hết cho 9.

Ta có: 3636 có cơ số tận cùng là 6 nên 3636 có tận cùng là 6.

910 = (92)5 = (....1)5 = (...1).

Vậy 3636-910 có tận cùng là 6-1=5 hay hiệu này chia hết cho 5. 

3636 - 910 chia hết cho 9 và 5 hay hiệu này chia hết cho 45.

b/ 71000 - 31000

Ta có: 71000= (74)250 = (...1)250=(..1)

31000= (34)250= (...1)250. (...1)250= (...1).

Vậy 71000- 31000 có tận cùng là 1-1=0 hay hiệu này chia hết cho 10

20 tháng 7 2015

a)Ta có :  36\(^{36}\) - 9\(^{10}\) chia hết cho 9  (1) (vì 36\(^{36}\) và 9\(^{10}\) đều chia hết cho 9)
36\(^{36}\) tận cùng là 6  (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6)
9\(^{10}\) tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1)
\(\Rightarrow36^{36}\) - 9\(^{10}\) tận cùng là 5 và do đó nó chia hết cho 5  (2)
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) 

\(\Rightarrow\) 36\(^{36}\)- 9\(^{10}\) chia hết cho 45.

23 tháng 6 2017

a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)

Ta có :

\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)

Mặt khác :

\(36^{36}=\left(......6\right)\)

\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)

Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)

b) Ta có :

\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)

\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)

Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1

\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)

\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)

Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)

6 tháng 7 2016

a) 106 - 57

= 26 . 56 - 57

= 56 . (26 - 5)

= 56 . (64 - 5)

= 56 . 59 chia hết cho 59

=> đpcm

b) 817 - 279 - 913

= (34)7 - (33)9 - (32)13

= 328 - 327 - 326

= 326 .(32 - 3 - 1)

= 326 . (9 - 3 - 1)

= 324 . 32 . 5

= 324 . 9 . 5

= 324 . 45 chia hết cho 45

=> đpcm

c) 87 - 218

= (23)7 - 218

= 221 - 218

= 218 . (23 - 1)

= 218 (8 - 1)

= 217 . 2 . 7

= 217 . 14 chia hết cho 14

=> đpcm

d) 109 + 108 + 107

= 107 . (102 + 10 + 1)

= 57 . 27 . (100 + 10 + 1)

= 57 . 26 . 2 . 111

= 57 . 26 . 222 chia hết cho 222

=> đpcm

1 tháng 10 2016

\(9^{1945}-2^{1930}=9^{1945}-4^{965}=...9-...4=...5\)Chia hết cho  5

\(4^{2010}+2^{2014}=4^{2010}+4^{1007}=...6+...4=...0\)chia hết cho 10

8 tháng 7 2019

để 10^2008+125 chia hết cho 45

=>10^2008+125 chia hết cho 9 và 5

vì 10^2008 chia hết cho 5,125 chia hết cho 5

=>10^2008 +125 chia hết cho 5 (1)

ta có :10^2008+125=100....00+125=1...0125

 vì  1+1+2+5 =9 chia hết cho 9 =>10^2008 +125 chia hết cho 9 (2)

từ (1) và (2) =>10^2008 +125 chia hết cho 45 (đpcm)

20 tháng 7 2016

\(A=\left(...4\right)-\left(...5\right)=...9\Rightarrow A\)không chia hết cho \(10\)

\(B=405^n=...5\)

\(2^{405}=2^{404}.2=2.^{4.101}.2=\left(...6\right).2=...2\)

\(m^2\)có chữ số tận cùng khác 3 

Vậy \(A\)có chữ số tận cùng khác \(0\Rightarrow A\)không chia hết cho \(10\).

ủng hộ mik nhé nhiều càng tốt

20 tháng 7 2016

a.

165 + 215 = (24)5 + 215 = 220 + 215 = 215 x (25 + 1) = 215 x (32 + 1) = 215 x 33

Vậy 1615 + 215 chia hết cho 33

b.

817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 322 x (36 - 35 - 34) = 322 x 405

Vậy  817 - 279 - 913 chia hết cho 405

 

20 tháng 7 2016

câu c)  hơi bị khó