Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=92+122=225
BC=15cm
* AH.BC=AB.AC
AH.15=9.12
AH.15=108
AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)
b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

a,c: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(HC=\sqrt{16^2-9^2}=5\sqrt{7}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot CB\)
=>\(CB=\dfrac{16^2}{5\sqrt{7}}=\dfrac{256}{5\sqrt{7}}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(sinB=\dfrac{AC}{BC}=16:\dfrac{256}{5\sqrt{7}}=\dfrac{5\sqrt{7}}{16}\)
=>\(\widehat{B}\simeq56^0\)
=>\(\widehat{C}=90^0-56^0=34^0\)
b: \(sinB=\dfrac{5\sqrt{7}}{16}\)
=>\(cosB=\sqrt{1-sin^2B}=\dfrac{9}{16}\)
\(tanB=\dfrac{5\sqrt{7}}{16}:\dfrac{9}{16}=\dfrac{5\sqrt{7}}{9}\)
\(cotB=1:\dfrac{5\sqrt{7}}{9}=\dfrac{9}{5\sqrt{7}}\)

cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C
=2
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(cosB=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)