K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2024

=2

NV
12 tháng 10 2024

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

\(sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)

30 tháng 9 2021

tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=92+122=225
  BC=15cm
* AH.BC=AB.AC
  AH.15=9.12
AH.15=108
  AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)

30 tháng 9 2021

b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

28 tháng 12 2021

Giúp mik câu c với ạ

 

28 tháng 12 2021

a: BC=15cm

AH=7,2cm

13 tháng 10 2023

a,c: ΔAHC vuông tại H 

=>\(AH^2+HC^2=AC^2\)

=>\(HC=\sqrt{16^2-9^2}=5\sqrt{7}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=CH\cdot CB\)

=>\(CB=\dfrac{16^2}{5\sqrt{7}}=\dfrac{256}{5\sqrt{7}}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(sinB=\dfrac{AC}{BC}=16:\dfrac{256}{5\sqrt{7}}=\dfrac{5\sqrt{7}}{16}\)

=>\(\widehat{B}\simeq56^0\)

=>\(\widehat{C}=90^0-56^0=34^0\)

b: \(sinB=\dfrac{5\sqrt{7}}{16}\)

=>\(cosB=\sqrt{1-sin^2B}=\dfrac{9}{16}\)

\(tanB=\dfrac{5\sqrt{7}}{16}:\dfrac{9}{16}=\dfrac{5\sqrt{7}}{9}\)

\(cotB=1:\dfrac{5\sqrt{7}}{9}=\dfrac{9}{5\sqrt{7}}\)

13 tháng 10 2023

\(sinC=\dfrac{AH}{AC}=\dfrac{9}{16}\)

\(\Rightarrow\widehat{C}\simeq34,2\)

\(\Rightarrow\widehat{B}=180^o-90^o-34,2^o=55,8^o\)

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}\\cosB=\dfrac{AB}{BC}\\tanB=\dfrac{AC}{AB}\\cotB=\dfrac{AB}{AC}\end{matrix}\right.\)

cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C