![](/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
a,Ta có: A có 2016 số số hạng, ghép A thành 504 nhóm, mỗi nhóm có 4 số hạng như sau :
\(A=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})\)
\(A=3.(1+3+3^2)+3^5.(1+3+3^2)+....+3^{2013}.(1+3+3^2)\)
\(A=3.13+3^5.13+....+3^{2013}.13\)
\(A=13.(3+3^5+...+3^{2013})⋮13\)
\(\Rightarrow A⋮13\)
\(a\)) Ta có :
\(A=3+3^2+3^3+..........+3^{2016}\) (2016 số hạng )
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}\right)\) (672 nhóm )
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+.......+3^{2015}\left(1+3+3^2\right)\)
\(A=3.13+3^4.13+........+3^{2015}.13\)
\(A=13\left(3+3^4+.......+3^{2016}\right)\)
\(\Rightarrow A\) \(⋮\) \(13\)
\(\Rightarrowđpcm\)
\(b\)) Ta có :
\(A=3+3^2+3^3+..........+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+...............+2^{2016}+3^{2017}\)
\(\Rightarrow3A-A=3^{2017}-3\)
\(\Rightarrow2A=3^{2017}-3\)
\(\Rightarrow2A+3=3^{2017}\)(1)
Theo bài ta có :
\(2A+3=3^{2x}\)(2)
Từ (1) và (2) ta có :
\(3^{2x}=3^{2017}\)
\(\Rightarrow2x=2017\)
\(x=2017:2\)
\(x=1008,5\) ( ko thoả mãn \(x\in N\))
Vậy ko tìm dc giá trị của \(x\) thỏa mãn theo yêu cầu
![](/images/avt/0.png?1311)
Ta có: \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)
\(\Rightarrow A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
- Đến đây bn lấy \(\frac{9}{22}\) so sánh vs \(\frac{65}{132}\) là ra ĐPCM nhé :3
Cho: A=(20152016 - 1).(20152016 +1 )
Chứng minh:
a. A chia hết cho 4.
b. A chia hết cho 12
Help me!!!!
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
Ta có: 3A=3+\(^{3^2+3^3+3^4+3^5+...+3^{2012}+3^{2013}}\)
\(\Rightarrow\)3A-A=2A=(\(3+3^2+3^3+3^4+...+3^{2013}\)) - (\(1-3^{ }-3^2-3^3-3^4-...-3^{2012}\))
\(\Rightarrow\)2A=\(3^{2013}-1\)\(\Rightarrow\)A=\(\left(3^{2013}-1\right):2\)\(\Rightarrow\)B-A=(\(^{\left(3^{2013}:2\right)-\left(\left(3^{2013}-1\right):2\right)\Rightarrow}\)
A = 1 + 3 + 32 +...+ 32012
3A = 3 + 32 + 33 +...+ 32013
3A - A = (3 + 32 + 33 +...+ 32013) - (1 + 3 + 32 +...+ 32012)
2A = 32013 - 1
A = \(\frac{3^{2013}-1}{2}\)
=> B - A = \(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}=\frac{3^{2013}-3^{2013}+1}{2}=\frac{1}{2}\)
Bạn cả phải cho các bạn trả lời nữa nhé chứ không phải mình cô Thương Hoài nhé bạn ,nếu cô Thương Hoài bận việc khác thì sao, ai mà giúp được câu hỏi của bạn được!
trả lời cho
CMR(a, a + b) = 1.