Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
Vậy x = 305
a, \(\dfrac{1}{5.8}\)+\(\dfrac{1}{8.11}\)+\(\dfrac{1}{11.14}\)+...+\(\dfrac{1}{x\left(x+3\right)}\)=\(\dfrac{101}{1540}\)
\(\dfrac{1}{3}\)(\(\dfrac{3}{5.8}\)+\(\dfrac{3}{8.11}\)+\(\dfrac{3}{11.14}\)+...+\(\dfrac{3}{x\left(x+3\right)}\))=\(\dfrac{101}{1540}\)
\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{11}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)
\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)
\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{101}{1540}\) : \(\dfrac{1}{3}\)
\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}\)=\(\dfrac{1}{5}\)-\(\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}\)=\(\dfrac{1}{308}\)
<=>1(x+3)=308.1
<=>1(x+3)=308
<=> x+3=308:1
<=> x+3=308
<=> x=308-3
<=> x=305
b,1+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{1}{x\left(x+1\right):2}\)=1\(\dfrac{1991}{1993}\)
\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{3984}{1993}\)\(2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3984}{1993}\)
\(2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)
\(2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)
\(1-\dfrac{1}{x+1}=\dfrac{3984}{1993}:2\)
\(1-\dfrac{1}{x+1}=\dfrac{1992}{1993}\)
\(\dfrac{1}{x+1}=1-\dfrac{1992}{1993}\)
\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)
<=>1(x+1)=1993.1
<=>1(x+1)=1993
<=> x+1=1993 : 1
<=> x+1=1993
<=> x=1993-1
<=> x=1992
![](/images/avt/0.png?1311)
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).
Tìm x:
1+\(\frac{1}{3}\)+\(\frac{1}{6}\)+....+\(\frac{2}{x.\left(x+1\right)}\)=\(1\frac{1991}{1993}\)
![](/images/avt/0.png?1311)
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=1+1-\frac{2}{x+1}=2-\frac{2}{x+1}\)
Do đó ta có phương trình:
\(2-\frac{2}{x+1}=1\frac{1991}{1993}\)
<=> \(\frac{2}{1993}=\frac{2}{x+1}\)
<=> x + 1 = 1993
<=> x = 1992
![](/images/avt/0.png?1311)
Có thể có nhiều hơn mà =.= 2 s của mik là 2 nick mik k cho người trả lời dc =.=
![](/images/avt/0.png?1311)
a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)
=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)
=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)
=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)
=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)
Mà : A = \(\frac{101}{1540}\)
=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)
=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)
=> 3x + 6 = 924
=> 3(x + 2) = 924
=> x + 2 = 308
=> x = 306
a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\) \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm
![](/images/avt/0.png?1311)
a)Ta có \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)= \(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=) \(x+3=305\)=) \(x=302\)
![](/images/avt/0.png?1311)
\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)
\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)
\(\Leftrightarrow x=-1+1=-2\)
Vậy x = -2
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(\Leftrightarrow x=1992\)
Ta có tổng số dãy số: 𝑆 = 1 1 ⋅ 3 + 1 3 ⋅ 5 + 1 5 ⋅ 7 + ⋯ + 1 𝑥 ( 𝑥 + 1 ) S= 1⋅3 1 + 3⋅5 1 + 5⋅7 1 +⋯+ x(x+1) 1 Bước 1: Biến đổ Ta use tí phân công thức 1 𝑛 ( 𝑛 + 2 ) = 1 2 ( 1 𝑛 − 1 𝑛 + 2 ) n(n+2) 1 = 2 1 ( n 1 − n+2 1 ) Áp dụng vào từng số 1 1 ⋅ 3 = 1 2 ( 1 1 − 1 3 ) 1⋅3 1 = 2 1 ( 1 1 − 3 1 ) 1 3 ⋅ 5 = 1 2 ( 1 3 − 1 5 ) 3⋅5 1 = 2 1 ( 3 1 − 5 1 ) 1 5 ⋅ 7 = 1 2 ( 1 5 − 1 7 ) 5⋅7 1 = 2 1 ( 5 1 − 7 1 ) ⋮ ⋮ 1 𝑥 ( 𝑥 + 2 ) = 1 2 ( 1 𝑥 − 1 𝑥 + 2 ) x(x+2) 1 = 2 1 ( x 1 − x+2 1 ) B Tổng của dãy số có 𝑆 = 1 2 ( 1 − 1 𝑥 + 2 ) S= 2 1 (1− x+2 1 ) D 1 2 ( 1 − 1 𝑥 + 2 ) = 1993 1991 2 1 (1− x+2 1 )= 1991 1993 Bước 3: Phương pháp giải thích Nhân hai về với 2: 1 − 1 𝑥 + 2 = 3986 1991 1− x+2 1 = 1991 3986 1 𝑥 + 2 = 1 − 3986 1991 = 1991 − 3986 1991 = − 1995 1991 x+2 1 =1− 1991 3986 = 1991 1991−3986 = 1991 −1995 Không thể có số tự nhiên 𝑥 xhài lòng
Ta có: \(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)
=>\(\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)
=>\(2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{1991}{1993}\)
=>\(2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{1991}{1993}\)
=>\(1-\dfrac{2}{x+1}=\dfrac{1991}{1993}\)
=>\(\dfrac{2}{x+1}=\dfrac{2}{1993}\)
=>x+1=1993
=>x=1992