
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k;y=2k.\)
Ta có: \(3x-2y=44\Rightarrow3\cdot5\cdot k-2\cdot2\cdot k=44\Rightarrow15k-4k=44\Rightarrow11k=44\Rightarrow k=11\Rightarrow x=55;y=22\)


a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt

\(\frac{x}{5}\)=\(\frac{y}{2}\)\(\Rightarrow\)2x=5y\(\Rightarrow\)3x=7,5y
thay vào: 7,5y-2y=44
\(\Rightarrow\)5,5y=44
\(\Rightarrow\)y=8
\(\Rightarrow\)x=20

c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha

ta có: \(\frac{x}{5}=\frac{y}{2}=\frac{3x}{15}=\frac{2y}{4}.\)
ADTCDTSBN
có: \(\frac{3x}{15}=\frac{2y}{4}=\frac{3x-2y}{15-4}=\frac{44}{11}=4\)
=> x/5 = 4 => x = 20
y/2 = 4 => y = 8
KL:...
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{2}=\frac{3x-2y}{15-4}=\frac{44}{11}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{y}{2}=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=8\end{cases}}\)
Vậy, x = 20, y = 8

#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{5}=\frac{y}{2}=\frac{3x-2y}{15-4}=\frac{44}{11}=4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{y}{2}=4\end{cases}\Rightarrow\hept{\begin{cases}x=20\\y=8\end{cases}}}\)
Vậy ...

Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{6-6+12}=\frac{24}{12}=2\)
\(\Rightarrow\begin{cases}x=2.2=4\\y=2.3=6\\z=2.6=12\end{cases}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x-2y+2z}{3.2-2.3+2.6}=\frac{24}{12}=2\)
Suy ra:
\(\frac{x}{2}=2\Rightarrow x=4;\frac{y}{3}=2\Rightarrow y=6;\frac{z}{6}=2\Rightarrow z=12\)
đề bài đâu bn
chịu :)