Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: B đối xứng với H qua AD
=> AH = AB và HB vuông góc với AD
Xét tam giác AIB và tam giác AIH, có:
* AH = AB (cmt)
* góc HAI = góc BAI (=90 độ )
* IA là cạnh chung
=> tam giác AIB = tam giác AIH (c.g.c)
=> góc AIB = góc AIH (yếu tố tương ứng)
Mà góc AIH = góc DIC (đối đỉnh)
=> góc AIB = goác DIC (đpcm)

Gọi E là trung điểm của DC
Khi đó ME , EN lần lượt là đường trung bình của \(\Delta\)BDC, \(\Delta\)DAC
=> ME = \(\frac{1}{2}\)BD, EN = \(\frac{1}{2}\)AC
Mà BD = AC nên ME = NE
=> ^ENM = ^EMN
Mà ^EMN = ^ BNM( EM//BD,slt)
và ^ENM = ^MKC (EN//AC, đồng vị)
=> ^ BNM = ^MKC (đpcm)

A B C M N H I K
Qua B kẻ đường thẳng song song với NI, cắt tia CA tại điểm K.
Xét \(\Delta\)BCK có: N là trung điểm BC, NI // BK; I thuộc CK => I là trung điểm của CK
=> IK=IC => IA + AK = IM + CM. Mà IA=IM nên AK=CM.
Ta có: AK=CM; CM=AB => AK=AB => \(\Delta\)BAK cân tại A => ^ABK=^AKB
Lại có: IH // BK (NI // BK) => ^AKB=^AIH; ^ABK=^AHI (So le trong)
Mà ^ABK=^AKB (cmt) => ^AIH=^AHI => \(\Delta\)HAI cân tại A => AH=AI (đpcm).
1. Chứng minh ΔAKM vuông:
2. Chứng minh ΔADM cân và tính ∠ANB:
3. Chứng minh CF ≤ 2EF:
Hy vọng lời giải này sẽ giúp bạn hiểu rõ bài toán. Nếu có bất kỳ thắc mắc nào khác, đừng ngần ngại hỏi tôi nhé!
1. Chứng minh ΔAKM vuông:
2. Chứng minh ΔADM cân và tính ∠ANB:
3. Chứng minh CF ≤ 2EF: