Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình bn tự vẽ nhé!!!!!
a. Ta có :
52 = 25
32 + 42 = 25
=> 52 = 32 + 42 hay BC2 = AB2 + AC2
=> ΔABCΔABC vuông tại A
b.Xét ΔABDΔABD và ΔEBDΔEBD ,có :
BD : cạnh chung
ABDˆ=EBDˆABD^=EBD^ ( BD là tia phân giác của góc B )
BADˆ=BEDˆ=900BAD^=BED^=900
=> ΔABD=ΔEBDΔABD=ΔEBD ( cạnh huyền - góc nhọn )
=> DA = DE
c.Xét ΔADFΔADF và ΔEDCΔEDC ,có :
DA = DE ( c/m b )
FADˆ=DECˆ=900FAD^=DEC^=900
ADFˆ=EDCˆADF^=EDC^ ( 2 góc đối đỉnh )
=> ΔADF=ΔEDCΔADF=ΔEDC ( g.c.g hoặc cạnh góc vuông - góc nhọn kề )
=> DF = DC (1)
mà DC > DE (2) ( trong tam giác vuông cạnh huyền lớn hơn cạnh góc vuông )
Từ (1) và (2) => DF > DE (đpcm )

cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0

a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!

a: BC=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE

a) Xét tam giác \(ABC\)có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=9+16=25\)
Do đó \(BC^2=AB^2+AC^2\)theo định lí Pythaogore đảo suy ra tam giác \(ABC\)vuông tại \(A\).
b) Xét tam giác \(DBA\)và tam giác \(DBE\):
\(\widehat{DAB}=\widehat{DEB}\left(=90^o\right)\)
\(DB\)cạnh chung
\(\widehat{DBA}=\widehat{DBE}\)
Suy ra \(\Delta DBA=\Delta DBE\)(cạnh huyền - góc nhọn)
\(\Rightarrow DA=DE\)(hai cạnh tương ứng)

xét tam giác adf và tam giác edc ta có
da=de (giải câu b)
góc fda = góc cde ( 2 góc đối đỉnh)
góc a= góc e
vậy tam giác adf = tam giác edc(g.c.g)
=>df=dc(2 cạnh tương ứng)(1)
xét tam giác dec vuông tại e ta có
dc>de(dc là cạnh huyền)(2)
từ (1)và (2) =>df=de
Vì tam giác ABC là tam giác vuông tại \(A\), ta có thể sử dụng định lý cosin hoặc định lý sin để tính toán các góc còn lại. Tuy nhiên, ta có thể nhận xét rằng:
b) Kẻ DE vuông góc với BC (E thuộc BC):
Để chứng minh \(D A = D E\), ta cần làm theo các bước sau:
Để chứng minh \(D A = D E\), bạn sẽ cần xây dựng các tam giác vuông và chứng minh tính đối xứng hoặc sử dụng các định lý hình học cụ thể. Cụ thể, trong trường hợp này, ta có thể chứng minh rằng tam giác \(A D E\) và tam giác \(A D B\) là đồng dạng (do có hai góc vuông và một góc chung).
Vì tôi không thể tạo ra hình ảnh trực tiếp trong câu trả lời này, bạn có thể vẽ hình với các bước sau:
a.
Ta có \(BC>AC>AB\)
Nên theo quan hệ giữa cạnh và góc, suy ra: \(\widehat{A}>\widehat{B}>\widehat{C}\)
b.
Do \(DE\perp BC\Rightarrow\Delta BED\) vuông tại E
Mặt khác: \(AB^2+AC^2=3^2+4^2=25\)
\(BC^2=5^2=25\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pitago đảo)
\(\Rightarrow\Delta BAD\) cũng vuông tại A
Xét hai tam giác vuông BAD và BED có:
BD là cạnh chung
\(\widehat{ABD}=\widehat{EBD}\) (do BD là phân giác)
\(\Rightarrow\Delta_{\perp}BAD=\Delta_{\perp}BED\) (ch-gn)
\(\Rightarrow DA=DE\)