K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Để A là số tự nhiên

=> 2n + 7 \(⋮\) 5n + 2

5n + 2 \(⋮\) 5n + 2

=> 10n + 35 \(⋮\) 5n + 2

10n + 4 \(⋮\) 5n + 2

=> 31 \(⋮\) 5n + 2

Vì n \(\in\) N => 5n + 2 \(\in\) N

=> 5n + 2 là Ư(31) = {1;31}

5n + 2 = 1 => n = -1/5 (loại)

5n + 2 = 31 => n = 28/5 (loại)

Vậy n không có giá trị nào thoả mãn

b) Giả sử phân số 2n + 7/5n + 2 chưa tối giản

=> 2n + 7 và 5n + 2 có ước chung là số nguyên tố

Gọi số nguyên tố d là ước chung của 2n + 7 và 5n + 2

=> 2n + 7 \(⋮\) d

5n + 2 \(⋮\) d

=> 10n + 35 \(⋮\) d

10n + 4 \(⋮\)d

=>. 31 \(⋮\)d

Vì d là số nguyên tố, 31 \(⋮\) d => d = 31

*d = 31 =>. 2n + 7 \(⋮\) 31

Mà. 31 \(⋮\) 31

=>2n - 24 \(⋮\) 31

2(n - 12) \(⋮\) 31

=> n - 12 \(⋮\) 31 (do 2 và 31 nguyên tố cùng nhau)

=> n = 31k + 12 (k thuộc N)

Khi đó 5n + 2 = 5(31k + 12) + 2 = 155k + 62 \(⋮\) 31

Vậy n = 31k + 12 thì phân số chưa tối giản

=> n \(\ne\) 31k + 12 thì phân số tối giản

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

21 tháng 3 2020

Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Đặt UCLN(2n+7, 5n+2)=d

=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)

5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)

Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)

=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)

Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)

Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.