Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Cx k khó lắm vẽ hình chứ bn tự làm đc nhỉ:)) mình làm câu a vs B th nha mấy câu kia vẽ rắc rối lắm lười vẽ=))
Bài Làm
a) Áp dụng quan hệ giữa cạnh và đường cao trong tam giác vuông vào tam giác AHC vuông tại H ( H vuông góc BC ) :
\(\Rightarrow\) AH2= AE.AC ( đpcm ) (1)
Áp dụng quan hệ giữa cạnh và đường cao trong tam giác vuông vào tam giác AHB vuông tại H ( H vuông góc BC ) :
\(\Rightarrow\)AH2=AD.AB ( đpcm ) ( 2 )
b) Từ (1) và (2) ta có : AE.AC = AD.AB
\(\Rightarrow\)\(\dfrac{AE}{AD}\)=\(\dfrac{AC}{AB}\)
Xét tam giác ADE và tam giác ABC ta có :
góc A chung
\(\dfrac{AE}{AD}\)=\(\dfrac{AC}{AB}\) (cmt)
\(\Rightarrow\)tam giác ADE đồng dạng với tam giác ABC ( đpcm )