K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2024

Ta có:

`7+7^2+7^3+7^4+...+7^99`

`=(7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^97+7^98+7^99)`

`= 7(1+7+7^2)+7^4(1+7+7^2)+...+7^97(1+7+7^2)`

`=7(1+7+49)+7^4(1+7+49)+...+7^97(1+7+49)`

`= 7 .57 + 7^4 .57 + ... + 7^97 . 57`

`= 57 . (7+7^4+...+7^97)\vdots 57 (đpcm)`

Bài làm :

\(a,7^6+7^5-7^4\)

\(=7^4.\left(7^2+7-1\right)\)

\(=7^4.55⋮55\)

=> đpcm 

\(b,2004^{100}+2004^{99}\)

\(=2004^{99}.\left(2004+1\right)\)

\(=2004^{99}.2005⋮2005\)

=> đpcm

Học tốt nhé

17 tháng 9 2020

76 + 75 - 74

= 74( 72 + 7 - 1 )

= 74( 49 + 7 - 1 )

= 74.55 chia hết cho 55 ( đpcm )

2004100 + 200499

= 200499( 2004 + 1 )

= 200499.2005 chia hết cho 2005 ( đpcm )

15 tháng 12 2015

hơi dài dòng ,tích đi tớ giải cho

16 tháng 6 2018

Quá easy bạn à!

a) Ta có: \(A=7+7^2+7^3+...+7^{30}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{29}+7^{30}\right)\)

Do các tổng trong ngoặc trên đều chia hết cho 8 nên A chia hết cho 8 (1)

b) \(A=7+7^2+7^3+...+7^{30}\)

\(=\left(7+7^2+7^3\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{28}+7^{29}+7^{30}\right)\)

Do các tổng trong ngoặc đều chia hết cho 57 nên A chia hết cho 57 (2)

Từ (1) và (2) ta có đpcm

26 tháng 11 2018

\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\text{​​}\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)

=> \(\frac{a}{b}=\frac{a^2+c^2}{b^2+c^2}\left(đpcm\right)\)

b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)

27 tháng 11 2018

a) Từ \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)(1)

Ta có \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)

b) Ta có \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)

27 tháng 11 2017

Bạn ơi đề bài 1  và bài 2 đều thiếu rùi kìa

10 tháng 12 2017

Bài 1 :

7^6+7^5-7^4=7^4.49+7^4.7-7^4.1
                   =7^4.(49+7-1)
                   =7^4.55
Vì 7^4.55 chia hết 5 Vậy 7^6+7^5-7^4 chia hết 5

30 tháng 10 2018

Đặt :

\(A=1+7+7^2+7^3+.....+7^{100}\)

\(=1+\left(7+7^2\right)+\left(7^3+7^4\right)+.....+\left(7^{99}+7^{100}\right)\)

\(=1+7\left(1+7\right)+7^3\left(1+7\right)+....+7^{99}\left(1+7\right)\)

\(=1+7.8+7^3.8+....+7^{99}.8\)

\(=1+8\left(7+7^3+.....+7^{99}\right)\)

Nhận xét :

\(8\left(7+7^3+....+7^{99}\right)⋮8\); \(1⋮8̸\)

\(\Leftrightarrow A\) chia 8 dư 1 \(\left(đpcm\right)\)

30 tháng 11 2016

a)Đặt \(A=7^6+7^5-7^4\)

\(A=7^4\left(7^2+7-1\right)\)

\(A=7^4\cdot55⋮55\left(đpcm\right)\)

b)\(A=1+5+5^2+5^3+...+5^{50}\)

\(5A=5+5^2+5^3+5^4+...+5^{51}\)

\(5A-A=\left(5+5^2+5^3+5^4+...+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{50}\right)\)

\(4A=5^{51}-1\)

\(A=\frac{5^{51}-1}{4}\)

30 tháng 11 2016

a)

Ta có :

\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)

=> Chia hết cho 5

b)

Ta có :

\(A=1+5+5^2+....+5^{50}\)

\(5A=5+5^2+....+5^{51}\)

=> 5A - A = \(\left(5+5^2+....+5^{51}\right)\)\(-\left(1+5+....+5^{50}\right)\)

\(\Rightarrow4A=5^{51}-1\)

\(\Rightarrow A=\frac{5^{51}-1}{4}\)