Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi H là trung điểm AB
=> \(IH=d_{\left(I,\Delta\right)}=\dfrac{\left|3\cdot2+4\cdot\left(-1\right)+3\right|}{\sqrt{3^2+4^2}}=1\)
\(S_{\Delta IAB}=2\cdot\left(\dfrac{1}{2}\cdot IH\cdot HA\right)=4\)
\(IH\cdot IA=4\Leftrightarrow1\cdot HA=4\Rightarrow HA=4\)
\(\Rightarrow R=IA=\sqrt{IH^2+HA^2}=\sqrt{1^2+4^2}=\sqrt{17}\)
\(\Rightarrow\) Phương trình đường tròn (x-2)2 +(y+1)2=17

Kẻ IH vuông góc AB
=>H là trung điểm của AB
\(d\left(I;\left(d\right)\right)=IH=\dfrac{\left|1\cdot1+\left(-2\right)\cdot\left(-3\right)-17\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{10}{\sqrt{10}}=\sqrt{10}\)
\(S_{IAB}=\dfrac{1}{2}\cdot IH\cdot AB=10\)
=>\(\dfrac{1}{2}\cdot\sqrt{10}\cdot2\cdot AI=10\)
=>\(AI=\sqrt{10}\)
\(R=\sqrt{\left(\sqrt{10}\right)^2\cdot2}=10\sqrt{2}\)
=>(C): \(\left(x-1\right)^2+\left(y+2\right)^2=200\)

ủa mà ID=d(I;(d)) mà sao ID2+d2(I;(d)) =3 vậy bạn
với lại R sao lại bằng ID+d(I;(d)) vậy bạn

a.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình AB:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.
Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)
\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)
Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)

\(d\left(I;d\right)=\dfrac{\left|-1+1+2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;d\right)=\sqrt{2}\)
Áp dụng định lý Pitago:
\(R^2=IA^2=IH^2+AH^2=IH^2+\left(\dfrac{AB}{2}\right)^2=3\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-1\right)^2=3\)

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình
\((x-a)^2+(y-b)^2=R^2.\)
\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:
\(a-b+1=0 (1)\)
Hạ \(MH⊥AB\) có \(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)
\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)
\(\Rightarrow R = \sqrt{2} \)
Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)
Ta có hệ :
\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)
Giải hệ \(PT\) ta được: \(a=1;b=2\).
\(\rightarrow \)Vậy \((C) \)có phương trình:\((x-1)^2+(y-2)^2=2\)
Gọi H là hình chiếu của I lên \(\Delta\)
\(\Rightarrow IH=d\left(I;\Delta\right)=\dfrac{\left|3.2-4.\left(-1\right)+3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{13}{5}\)
Do \(\left\{{}\begin{matrix}IA=IB=R\\\widehat{I}=90^0\end{matrix}\right.\) nên tam giác IAB vuông cân tại I
\(\Rightarrow R=IA=\dfrac{IH}{sin45^0}=\dfrac{13\sqrt{2}}{5}\)
Phương trình:
\(\left(x-2\right)^2+\left(y+1\right)^2=\dfrac{338}{25}\)
Phương trình đường tròn tâm I(2,1)I(2,1) là:
(x−2)2+(y−1)2=R2(x−2)2+(y−1)2=R2
Vì △IAB△IAB vuông tại II nên ΔΔ là đường kính của đường tròn.
Khoảng cách từ II đến Δ:3x−4y+3=0Δ:3x−4y+3=0:
d=|3(2)−4(1)+3|√32+(−4)2=55=1d=|3(2)−4(1)+3|32+(−4)2=55=1
Bán kính R=d=1R=d=1, nên phương trình đường tròn là:
(x−2)2+(y−1)2=5
NGỦ ĐI NHÉ ĐỪNG ĐỂ ẢNH HƯỞNG ĐẾN SỨC KHỎE