K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 3

Gọi H là hình chiếu của I lên \(\Delta\)

\(\Rightarrow IH=d\left(I;\Delta\right)=\dfrac{\left|3.2-4.\left(-1\right)+3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{13}{5}\)

Do \(\left\{{}\begin{matrix}IA=IB=R\\\widehat{I}=90^0\end{matrix}\right.\) nên tam giác IAB vuông cân tại I

\(\Rightarrow R=IA=\dfrac{IH}{sin45^0}=\dfrac{13\sqrt{2}}{5}\)

Phương trình:

\(\left(x-2\right)^2+\left(y+1\right)^2=\dfrac{338}{25}\)

30 tháng 3

Phương trình đường tròn tâm I(2,1)I(2,1) là:

(x−2)2+(y−1)2=R2(x−2)2+(y−1)2=R2

IAB△IAB vuông tại II nên ΔΔ là đường kính của đường tròn.

Khoảng cách từ II đến Δ:3x−4y+3=0Δ:3x−4y+3=0:

d=|3(2)−4(1)+3|32+(−4)2=55=1d=|3(2)−4(1)+3|32+(−4)2=55=1

Bán kính R=d=1R=d=1, nên phương trình đường tròn là:

(x−2)2+(y−1)2=5

NGỦ ĐI NHÉ ĐỪNG ĐỂ ẢNH HƯỞNG ĐẾN SỨC KHỎE

26 tháng 3 2022

gọi H là trung điểm AB

=> \(IH=d_{\left(I,\Delta\right)}=\dfrac{\left|3\cdot2+4\cdot\left(-1\right)+3\right|}{\sqrt{3^2+4^2}}=1\)

\(S_{\Delta IAB}=2\cdot\left(\dfrac{1}{2}\cdot IH\cdot HA\right)=4\)

\(IH\cdot IA=4\Leftrightarrow1\cdot HA=4\Rightarrow HA=4\)

\(\Rightarrow R=IA=\sqrt{IH^2+HA^2}=\sqrt{1^2+4^2}=\sqrt{17}\)

\(\Rightarrow\) Phương trình đường tròn (x-2)2 +(y+1)2=17

Kẻ IH vuông góc AB

=>H là trung điểm của AB

\(d\left(I;\left(d\right)\right)=IH=\dfrac{\left|1\cdot1+\left(-2\right)\cdot\left(-3\right)-17\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{10}{\sqrt{10}}=\sqrt{10}\)

\(S_{IAB}=\dfrac{1}{2}\cdot IH\cdot AB=10\)

=>\(\dfrac{1}{2}\cdot\sqrt{10}\cdot2\cdot AI=10\)

=>\(AI=\sqrt{10}\)

\(R=\sqrt{\left(\sqrt{10}\right)^2\cdot2}=10\sqrt{2}\)

=>(C): \(\left(x-1\right)^2+\left(y+2\right)^2=200\)

18 tháng 4 2021

ủa mà ID=d(I;(d)) mà sao ID2+d2(I;(d)) =3 vậy bạn

với lại R sao lại bằng ID+d(I;(d)) vậy bạn

5 tháng 5 2022

mọi người giúp con giải bài này với ạ . Con xin cảm ơn

 

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
7 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt

Phương trình AB:

\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.

Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)

\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)

Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)

NV
16 tháng 5 2021

\(d\left(I;d\right)=\dfrac{\left|-1+1+2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;d\right)=\sqrt{2}\)

Áp dụng định lý Pitago:

\(R^2=IA^2=IH^2+AH^2=IH^2+\left(\dfrac{AB}{2}\right)^2=3\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-1\right)^2=3\)

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih