Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(45=BCNN\left(5,9\right)\) và \(ƯCLN\left(5,9\right)=1\)
Ta có :
\(10^{2008}+125=\left(100......0\right)+125=\left(1000.....125\right)\)
Mà \(10^{2008}+125\) có chữ số tận cùng là 5 \(\Leftrightarrow10^{2008}+125⋮5\left(1\right)\)
\(10^{2008}+125\) có tổng các chữ số chia hết cho 9 \(\Leftrightarrow10^{2008}+125⋮9\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(10^{2008}+125\right)⋮5,9\)
\(\Leftrightarrow10^{2008}+125⋮45\left(đpcm\right)\)
để 10^2008+125 chia hết cho 45
=>10^2008+125 chia hết cho 9 và 5
vì 10^2008 chia hết cho 5,125 chia hết cho 5
=>10^2008 +125 chia hết cho 5 (1)
ta có :10^2008+125=100....00+125=1...0125
vì 1+1+2+5 =9 chia hết cho 9 =>10^2008 +125 chia hết cho 9 (2)
từ (1) và (2) =>10^2008 +125 chia hết cho 45 (đpcm)
101983+125
101983=101973.1010
=Vì 1010=10000000000/45 nên 101973 .1010/ hay 101983/45
125/45
=>101983+125/45
(dấu"/" của mik nghĩa là chia hết)
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
Bài 2:
a: \(5^{2008}+5^{2007}+5^{2006}\)
\(=5^{2006}\left(5^2+5+1\right)=5^{2006}\cdot31⋮31\)
b: \(8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11
???
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
A = 102008 + 125
A = \(\overline{1000...00}\) + 125 ( 2008 chữ số 0)
A = \(\overline{1000..125}\) (2008 chữ số 0)
Xét tổng các chữ số của A ta có: 1 + 0 x 2008 + 1 + 2 + 5 = 9 ⋮ 9
⇒ A = \(\overline{100...00125}\) ⋮ 9; Mặt khác A = \(\overline{10...00125}\) ⋮ 5
⇒ A \(\in\) BC(5; 9); 5 = 5; 9 = 32 ⇒ BCNN(5; 9) = 32.5 = 45
⇒ A \(\in\) B(45) ⇒ A = 102008 + 125 ⋮ 45 (đpcm)