Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3)
A=(2+2^5+...+2^57)*15 chia het cho 15
CM:
A chia hết cho 21
=> A chia hết cho 3 và 7
Ta có
A=2(1+2)+2^3(1+2)+..............+2^59(1...
A=3(2+2^3+2^5+........+2^59)chia hết cho 3
Ta có :
A=2(1+2+2^2)+2^4(1+2+2^2)+...........+2...
A=7(2+2^4+2^7+..........+2^58)
=> A chia hết cho 3 và 7=> A chia hết
Vậy A chia hết cho 21 và 15
Nếu B chia hết cho 21 suy ra B chia hết cho 3,7
B=(2+2^2)+(2^3+2^4)+...+(2^29+2^30)
=2(1+2)+2^3(1+2)+...+2^29(1+2)
=2.3+2^3.3+...+2^29.3
=3(2+2^3+...+2^29) chia hết cho 3
B=(2+2^2+2^3)+...+(2^28+2^29+2^30)
=2(1+2+2^2)+...+2^28(1+2+2^2)
=2.7+...+2^28.7
=7(2+...+2^28) chia hết cho 7
Vậy B chia hết cho 21
\(\left(2+2^3+2^5\right)+\left(2^2+2^4+2^6\right)+.........\)
\(2\left(1+2^2+2^4\right)+2^2\left(1+2^2+2^4\right)\)+...
\(2\left(21\right)+2^2\left(21\right)+....\)
21(2+2^2+...)
vậy
Nếu B chia hết cho 21 suy ra B chia hết cho 3,7
B=(2+2^2)+(2^3+2^4)+...+(2^29+2^30)
=2(1+2)+2^3(1+2)+...+2^29(1+2)
=2.3+2^3.3+...+2^29.3 =3(2+2^3+...+2^29) chia hết cho 3
B=(2+2^2+2^3)+...+(2^28+2^29+2^30)
=2(1+2+2^2)+...+2^28(1+2+2^2) =2.7+...+2^28.7
=7(2+...+2^28) chia hết cho 7 Vậy B chia hết cho 21
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Nếu B chia hết cho 21 suy ra B chia hết cho 3,7
B=(2+2^2)+(2^3+2^4)+...+(2^29+2^30)
=2(1+2)+2^3(1+2)+...+2^29(1+2) =2.3+2^3.3+...+2^29.3
=3(2+2^3+...+2^29) chia hết cho 3
B=(2+2^2+2^3)+...+(2^28+2^29+2^30)
=2(1+2+2^2)+...+2^28(1+2+2^2)
=2.7+...+2^28.7 =7(2+...+2^28) chia hết cho 7 Vậy B chia hết cho 21
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
\(B=2+2^2+2^3+...+2^{30}\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+...+\left(2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}\right)⋮21\)\(B=2.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{25}.\left(1+2+2^2+2^3+2^4+2^5\right)⋮21\)\(B=2.\left(1+2+4+8+16+32\right)+2^{25}.\left(1+2+4+8+16+32\right)⋮21\)
\(B=\left(2+...+2^{25}\right).63⋮21\)
\(B⋮21\)