
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2

A C B N D E M
( Thông cảm hình bị lệch )
a) + Xét \(\Delta ABC\)và \(\Delta DMC\)có :
AM = DM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)( vì là hai góc đối đỉnh ) => \(\Delta AMB=\Delta DMC\)
MB = MC ( AM là trung tuyến của \(\Delta ABC\))
=> \(\widehat{B}=\widehat{MCD}\)( hai góc tương ứng )
=> DC // AB ( có hai góc so le trong = )
Mà AB \(\perp\)AC ( Vì \(\Delta ABC\)vuông tại A)
=> DC _|_ AC
+ Xét \(\Delta BEC\)có :
M là trung điểm của cạnh BC ( Vì AM là trung tuyến của ABC )
=> EM là trung tuyến
A là trung điểm của BE ( Vì EA = AB ) => CA là trung tuyến
Mà EM cắt AC tại N => N là trọng tâm của \(\Delta ABC\)
\(\Rightarrow NC=\frac{2}{3}CA\Rightarrow NC=2NA\)
+ Ta có \(\Delta AMB=\Delta DMC\Rightarrow AB=CD\)
Xét \(\Delta ACD\)có :
CD + AC > AD ( bđt tam giác ) . Mà CD = AB ; AD = 2AM
=> \(AB+AC>2AM\Leftrightarrow\frac{AB+AC}{2}>AM\)(1)
+ Xét \(\Delta AMB\)có : AM > AB - BM
\(\Delta AMC\)có : AM > AC - CM
=> 2AM > AB + AC - BM - CM
<=> 2AM > AB + AC - (BM +CM )
<=> 2AM > AB + AC - BC
<=> AM > \(\frac{AB+AC-BC}{2}\)(2)
Từ (1), (2) => Điều cần cm trên đề bài .

a ) + ΔAMB = ΔDMC ( c.g.c )
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)
=> AB // CD => CD ⊥ AC
b) + Xét ΔBEC có 2 đg trung tuyến EM và CA cắt nhau tại N
=> N là trọng tâm ΔBEC
=> NC = 2 NA
c) Xét ΔABM theo bất đẳng thức tam giác :
\(AM>AB-BM\)
+ Tương tự ta cm đc : \(AM>AC-CM\)
Do đó : 2AM > AB + AC - ( BM + CM )
=> \(2AM>AB+AC-BC\)
\(\Rightarrow\frac{AB+AC-BC}{2}< AM\) (1)
+ ΔAMB = ΔDMC ( c.g.c )
=> AB = CD
+ Xét ΔACD theo bđt tam giác :
\(AD< AC+CD\)
\(\Rightarrow2AM< AC+AB\)
\(\Rightarrow AM< \frac{AB+AC}{2}\) (2)
+ Từ (1) và (2) suy ra : \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\)

Mình có hình cho câu a) thôi nha.
a) Xét 2 \(\Delta\) \(BEA\) và \(BEM\) có:
\(BA=BM\left(gt\right)\)
\(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
Cạnh BE chung
=> \(\Delta BEA=\Delta BEM\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta BEA=\Delta BEM.\)
=> \(EA=EM\) (2 cạnh tương ứng).
=> E thuộc đường trung trực của \(AM\) (1).
Vì \(BA=BM\left(gt\right)\)
=> B thuộc đường trung trực của \(AM\) (2).
Từ (1) và (2) => \(BE\) là đường trung trực của \(AM.\)
Ta có: \(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
=> \(\widehat{ABN}=\widehat{MBN}.\)
Xét 2 \(\Delta\) \(ABN\) và \(MBN\) có:
\(AB=MB\left(gt\right)\)
\(\widehat{ABN}=\widehat{MBN}\left(cmt\right)\)
Cạnh BN chung
=> \(\Delta ABN=\Delta MBN\left(c-g-c\right)\)
=> \(AN=MN\) (2 cạnh tương ứng).
=> N là trung điểm của \(AM.\)
Chúc bạn học tốt!
Giả thiết bài toán đâu em nhỉ?
Fan LMC gamer 😄^_^