K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4

Ko dc nhá

Trong toán học, "1 + 1 = 3" là một câu sai vì theo định lý cơ bản của phép cộng, 1 + 1 luôn bằng 2. Tuy nhiên, nếu bạn muốn thử chứng minh "1 + 1 = 3" trong một ngữ cảnh phi lý hoặc một trò đùa, thì có thể thực hiện một số phép toán "sai" để đưa đến kết quả như vậy. Ví dụ, một số người sẽ dùng những phép toán "không hợp lệ" hoặc "mơ hồ" để chứng minh điều này.

Ví dụ một cách "giả" để chứng minh:

  1. Giả sử ta có:
    \(a = b\)
  2. Nhân cả hai vế với \(a\), ta có:
    \(a^{2} = a b\)
  3. Trừ \(b^{2}\) từ cả hai vế:
    \(a^{2} - b^{2} = a b - b^{2}\)
  4. Phân tích các vế:
    \(\left(\right. a + b \left.\right) \left(\right. a - b \left.\right) = b \left(\right. a - b \left.\right)\)
  5. Chia cả hai vế cho \(\left(\right. a - b \left.\right)\) (nhưng nhớ rằng \(a = b\), nên \(a - b = 0\), việc chia cho 0 là không hợp lệ, nhưng ta sẽ tiếp tục để thấy được sai sót):
    \(a + b = b\)
  6. Thay vào ta có:
    \(2 b = b\)
  7. Nếu chia cho \(b\), ta sẽ được:
    \(2 = 1\)

Và từ đó có thể dẫn đến các kết luận sai lệch như "1 + 1 = 3".

Tất nhiên, đây là một cách "chứng minh" phi lý và không đúng trong toán học thực tế. Chứng minh này chỉ cho thấy sự sai sót khi thực hiện phép chia cho 0, điều mà trong toán học là không hợp lệ!

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

27 tháng 7 2016

3+4=7

30+30=60

ko pik

ko pik

ko pik

ko pik

29 tháng 7 2020

1/

\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\

\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)

Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\) 

Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14

29 tháng 7 2020

1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)

vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)

đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)

\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)

đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)

hệ này vô nghiệm nên bât không trở thành đẳng thức

vậy bất đẳng thức được chứng minh

2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)

tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên

\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có 

\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)

từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1

5 tháng 9 2018

Toán lớp 1 đây à ?

27 tháng 6 2021

toán 1 khó vậy

29 tháng 6 2021
Gì mà Toán lớp 1 khó vậy nè?
9 tháng 5 2018

2 chiếc = 1 đôi

Logic đúng hông nè

9 tháng 5 2018

vì 2 cái =1 dôi

=>2=1

h cho 10 k

27 tháng 8 2021

bạn ơi mình có cách làm bài này dễ hơn quy nạp, bạn có thể tham khảo mình :

trước tiên mình cho bạn công thức an-bn chia hết a-b (n tự nhiên,a,b nguyên)và đề trên bạn thiếu n>0 nha , n=0 thì điều cm ko đúng

11n+1+122n-1

=11n+2-1+11n-1.12-11n-1.12+122n-2+1

=121.11n-1+11n-1.12+144n-1.12-11n-1.12

=11n-1(121+12)+12(144n-1-11n-1)

=11n-1.133+12(144n-1-11n-1)

vì 133 chia hết cho 133 suy ra 11n-1.133 chia hết cho 133 (1)

vì n>0 suy ra n-1>=0 suy ra n-1 tự nhiên

vì 144n-1-11n-1 chia hết cho 144-11=133 và  n-1 tự nhiên  suy ra 144n-1-11n-1 chia hết cho 133 suy ra 12(144n-1-11n-1) chia hết cho 133 (2)

từ (1),(2) suy ra 11n-1.133+12(144n-1-11n-1)chia hết cho 133 suy ra 11n+1+122n-1 chia hết cho 133 

29 tháng 8 2021

undefined  

Mình thấy quy nạp cũng dễ mà, nhỉ :)))

26 tháng 8 2021

Toán lớp 1 hả má ơi

26 tháng 8 2021

đay là toán lớp 1 hả :)))

8 tháng 7 2016

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Có:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)

\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)