Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2.\sqrt{4}}\)\(=\sqrt{2.2}\)\(=\sqrt{4}\)\(=2\)
\(23+223+2223+22223=24692\)
\(\frac{7}{5}:\frac{5}{4}=\frac{7}{5}.\frac{4}{5}=\frac{28}{25}\)
Ap dung bdt AM-GM cho 2 so ko am A,B ta co
\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)
VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)
=>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)
Tu (2),(3) => DPCM
a) 3/4x16/9-7/5:(-21/20)
=4/3-(-4/3)
=8/3
b)=7/3-1/3x[-3/2+(2/3+2)]
=7/3-1/3x[-3/2+8/3]
=7/3-1/3x7/6
=7/3-7/18
=35/18
c)=(20+37/4):9/4
=117/4:9/4
=13
d)=6-14/5x25/8-8/5:1/4
=6-35/4-32/5
=-11/4-32/5
=-183/20
Đây không phải toán lớp 1 đâu bạn
Tớ không biết vì tớ mới lớp 5
K mk nha
*Mio*
Tự đăng bài rồi tự làm luôn à bn .
Đây ko pk là Toán lớp nhá
Học tôt nhé bn
# MissyGirl #
Let's break down and solve the expression step by step: The given expression is: \[ 23^{2^2} : 4 : 4 + 4.65 \left( \frac{78.2}{2.93^2} \right) 2.64 - \frac{4.34}{\tanh} \] ### Step 1: Simplify the exponentiation 1. \( 23^{2^2} = 23^{4} \) \[ 23^4 = 23 \times 23 \times 23 \times 23 = 279841 \] So the expression becomes: \[ 279841 : 4 : 4 + 4.65 \left( \frac{78.2}{2.93^2} \right) 2.64 - \frac{4.34}{\tanh} \] ### Step 2: Division and multiplication Now simplify the divisions and multiplications step by step: 1. \( 279841 : 4 = 69960.25 \) 2. \( 69960.25 : 4 = 17490.0625 \) So the expression becomes: \[ 17490.0625 + 4.65 \left( \frac{78.2}{2.93^2} \right) 2.64 - \frac{4.34}{\tanh} \] ### Step 3: Simplify \( \frac{78.2}{2.93^2} \) First calculate \( 2.93^2 \): \[ 2.93^2 = 8.5849 \] Now calculate \( \frac{78.2}{8.5849} \): \[ \frac{78.2}{8.5849} \approx 9.1 \] So the expression becomes: \[ 17490.0625 + 4.65 \times 9.1 \times 2.64 - \frac{4.34}{\tanh} \] ### Step 4: Multiply \( 4.65 \times 9.1 \times 2.64 \) First calculate \( 4.65 \times 9.1 = 42.315 \), and then multiply by \( 2.64 \): \[ 42.315 \times 2.64 \approx 111.3 \] So the expression becomes: \[ 17490.0625 + 111.3 - \frac{4.34}{\tanh} \] ### Step 5: Handle \( \frac{4.34}{\tanh} \) The expression contains \( \tanh \), but since no specific argument is provided for \( \tanh \), it's impossible to proceed without more information about this value. Assuming that \( \tanh \) represents a value for a specific angle or input, you would need that specific information to complete this calculation. If we assume that \( \tanh \) equals 1 (which is a typical approximation in some contexts), the last term becomes: \[ \frac{4.34}{1} = 4.34 \] ### Step 6: Final Calculation Now combine the results: \[ 17490.0625 + 111.3 - 4.34 = 17596.0225 \] Thus, the result of the expression is approximately: \[ \boxed{17596.0225} \] If you have a specific value for \( \tanh \), this could change, so feel free to clarify if necessary!
@ Bùi Lê Bảo An Cop A.I thì ghi tham khảo nhé >:(